Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Overview

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements

Our implementation used for the MICCAI 2021 FLARE Challenge titled Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements.

You need to have the MedicalDataAugmentationTool framework by Christian Payer downloaded and in your PYTHONPATH for the scripts to work.

If you have questions about the code, write me a mail.

Dependencies

The following frameworks/libraries were used in the version as stated. If you run into problems with the libraries, please verify that you have the same version installed.

  • Python 3.9
  • TensorFlow 2.6
  • SimpleITK 2.0
  • Numpy 1.20

Dataset and Preprocessing

The dataset as well as a detailed description of it can be found on the challenge website. Follow the steps described there to download the data.

Define the base_dataset_folder containing the downloaded TrainingImg, TrainingMask and ValidationImg in the script preprocessing/preprocessing.py and execute it to generate TrainingImg_small and TrainingMask_small.

Also, download the setup folder provided in this repository and place it in the base_dataset_folder, the following structure is expected:

.                                       # The `base_dataset_folder` of the dataset
├── TrainingImg                         # Image folder containing all training images
│   ├── train_000_0000.nii.gz            
│   ├── ...                   
│   └── train_360_0000.nii.gz            
├── TrainingMask                        # Image folder containing all training masks
│   ├── train_000.nii.gz            
│   ├── ...                   
│   └── train_360.nii.gz  
├── ValidationImg                       # Image folder containing all validation images
│   ├── validation_000_0000.nii.gz            
│   ├── ...                   
│   └── validation_360_0000.nii.gz  
├── TrainingImg_small                   # Image folder containing all downsampled training images generated by `preprocessing/preprocessing.py`
│   ├── train_000_0000.nii.gz            
│   ├── ...                   
│   └── train_360_0000.nii.gz  
├── TrainingMask_small                  # Image folder containing all downsampled training masks generated by `preprocessing/preprocessing.py`
│   ├── train_000_0000.nii.gz            
│   ├── ...                   
│   └── train_360_0000.nii.gz  
└── setup                               # Setup folder as provided in this repository

Train Models

To train a localization model, run localization/main.py after defining the base_dataset_folder as well as the base_output_folder.

To train a segmentation model, run scn/main.py. Again, base_dataset_folder and base_output_folder need to be set accordingly beforehand.

In both cases in function run(), the variable cv can be set to 0, 1, 2, 3 or 4. The values 1-4 represent the respective cross-validation fold. When choosing 0, all training data is used to train the model, which also deactivates the generation of test outputs.

Further parameters like the number of training iterations (max_iter) and the number of iterations after which to perfrom testing (test_iter) can be modified in __init__() of the MainLoop class.

Generate a SavedModel

To convert a trained network to a SavedModel, the script localization/main_create_model.py respectively scn/main_create_model.py can be used after a model was trained.

Before running the respective script, the variable load_model_base needs to be set to the trained models output folder, e.g., .../localization/cv1/2021-09-27_13-18-59.

Furthermore, load_model_iter should be set to the same value as max_iter used during training the model. The value needs to be set to an iteration for which the network weights have been generated.

Generate tf_utils_module

The script inference/inference_tf_utils_module.py can be used to trace and save the tf.functions used for preprocessing during inference into a SavedModel and generate saved_models/tf_utils_module.

To do so, the input_path and output_path need to be defined in the script. The input_path is expected to contain valid images, we suggest to use the folder ValidationImg.

Inference

The provided inference script can be used to evaluate the performance of our method on unseen data efficiently.

The script inference/inference.py requires that all SavedModels are present in the saved_models folder, i.e., saved_models/localization, saved_models/segmentation and saved_models/tf_utils_module need to contain the respective SavedModel. Either, use the provided SavedModels for inference by copying them from submitted_saved_models to saved_models, or use your own models generated as described above.

Additionally, the input_path and output_path need to be defined in the script. The input_path is expected to contain valid images, we suggest to use the folder ValidationImg.

.                                       # The base folder of this repository.
├── saved_models                        # Required by `inference.py`.
│   ├── localization                    # SavedModel of the localization model.
│   │   ├── assets
│   │   ├── variables
│   │   └── saved_model.pb
│   ├── segmentation                    # SavedModel of the segmentation (scn) model.
│   │   ├── assets
│   │   ├── variables
│   │   └── saved_model.pb
│   └── tf_utils_module                 # SavedModel of the tf.functions used for preprocessing during inference.
│       ├── assets
│       ├── variables
│       └── saved_model.pb
...

Docker

The provided Dockerfile can be used to generate a docker image which can readily be used for inference. The SavedModels are expected in the folder saved_models, either copy the provided SavedModels from submitted_saved_models to saved_models or generate your own. If you have a problem with setting up docker, please refer to the documentation.

To build a docker model, run the following command in the folder containing the Dockerfile.

docker build -t icg .

To run your built docker, use the command below, after defining the input and output directories within the command. We recommend to use ValidationImg as input folder.

If you have multiple GPUs and want to select a specific one to run the docker image, modify /dev/nvidia0 to the respective GPUs identifier, e.g., /dev/nvidia1.

docker container run --gpus all --device /dev/nvidia0 --device /dev/nvidia-uvm --device /dev/nvidia-uvm-tools --device /dev/nvidiactl --name icg --rm -v /PATH/TO/DATASET/ValidationImg/:/workspace/inputs/ -v /PATH/TO/OUTPUT/FOLDER/:/workspace/outputs/ icg:latest /bin/bash -c "sh predict.sh" 

Citation

If you use this code for your research, please cite our paper.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements

@article{Thaler2021Efficient,
  title={Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements},
  author={Thaler, Franz and Payer, Christian and Bischof, Horst and {\v{S}}tern, Darko},
  year={2021}
}
Owner
Franz Thaler
Franz Thaler
Python wrapper of LSODA (solving ODEs) which can be called from within numba functions.

numbalsoda numbalsoda is a python wrapper to the LSODA method in ODEPACK, which is for solving ordinary differential equation initial value problems.

Nick Wogan 52 Jan 09, 2023
Object detection, 3D detection, and pose estimation using center point detection:

Objects as Points Object detection, 3D detection, and pose estimation using center point detection: Objects as Points, Xingyi Zhou, Dequan Wang, Phili

Xingyi Zhou 6.7k Jan 03, 2023
DrNAS: Dirichlet Neural Architecture Search

This paper proposes a novel differentiable architecture search method by formulating it into a distribution learning problem. We treat the continuously relaxed architecture mixing weight as random va

Xiangning Chen 37 Jan 03, 2023
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs)

Description This program presents convolutional kernel density estimation, a method used to detect intercritical epilpetic spikes (IEDs) in [Gardy et

Ludovic Gardy 0 Feb 09, 2022
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
[CVPR'22] COAP: Learning Compositional Occupancy of People

COAP: Compositional Articulated Occupancy of People Paper | Video | Project Page This is the official implementation of the CVPR 2022 paper COAP: Lear

Marko Mihajlovic 111 Dec 11, 2022
Source code of article "Towards Toxic and Narcotic Medication Detection with Rotated Object Detector"

Towards Toxic and Narcotic Medication Detection with Rotated Object Detector Introduction This is the source code of article: Towards Toxic and Narcot

Woody. Wang 3 Oct 29, 2022
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
Video Corpus Moment Retrieval with Contrastive Learning (SIGIR 2021)

Video Corpus Moment Retrieval with Contrastive Learning PyTorch implementation for the paper "Video Corpus Moment Retrieval with Contrastive Learning"

ZHANG HAO 42 Dec 29, 2022
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
Image Matching Evaluation

Image Matching Evaluation (IME) IME provides to test any feature matching algorithm on datasets containing ground-truth homographies. Also, one can re

32 Nov 17, 2022
Kroomsa: A search engine for the curious

Kroomsa A search engine for the curious. It is a search algorithm designed to en

Wingify 7 Jun 20, 2022
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
Language Used: Python . Made in Jupyter(Anaconda) notebook.

FACE-DETECTION-ATTENDENCE-SYSTEM Made in Jupyter(Anaconda) notebook. Language Used: Python Steps to perform before running the program : Install Anaco

1 Jan 12, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023