Free Data Engineering course!

Overview

Data Engineering Zoomcamp

Syllabus

Taking the course

Self-paced mode

All the materials of the course are freely available, so you can take the course at your own pace

  • Follow the suggested syllabus (see below) week by week
  • You don't need to fill in the registration form. Just start watching the videos and join Slack
  • Check FAQ if you have problems
  • If you can't find a solution to your problem in FAQ, ask for help in Slack

2022 Cohort

Asking for help in Slack

The best way to get support is to use DataTalks.Club's Slack. Join the #course-data-engineering channel.

To make discussions in Slack more organized:

Syllabus

Week 1: Introduction & Prerequisites

  • Course overview
  • Introduction to GCP
  • Docker and docker-compose
  • Running Postgres locally with Docker
  • Setting up infrastructure on GCP with Terraform
  • Preparing the environment for the course
  • Homework

More details

Week 2: Data ingestion

  • Data Lake
  • Workflow orchestration
  • Setting up Airflow locally
  • Ingesting data to GCP with Airflow
  • Ingesting data to local Postgres with Airflow
  • Moving data from AWS to GCP (Transfer service)
  • Homework

More details

Week 3: Data Warehouse

  • Data Warehouse
  • BigQuery
  • Partitoning and clustering
  • BigQuery best practices
  • Internals of BigQuery
  • Integrating BigQuery with Airflow
  • BigQuery Machine Learning

More details

Week 4: Analytics engineering

  • Basics of analytics engineering
  • dbt (data build tool)
  • BigQuery and dbt
  • Postgres and dbt
  • dbt models
  • Testing and documenting
  • Deployment to the cloud and locally
  • Visualising the data with google data studio and metabase

More details

Week 5: Batch processing

  • Batch processing
  • What is Spark
  • Spark Dataframes
  • Spark SQL
  • Internals: GroupBy and joins

More details

Week 6: Streaming

  • Introduction to Kafka
  • Schemas (avro)
  • Kafka Streams
  • Kafka Connect and KSQL

More details

Week 7, 8 & 9: Project

Putting everything we learned to practice

  • Week 7 and 8: working on your own project
  • Week 9: reviewing your peers

More details

Overview

Architecture diagram

Technologies

  • Google Cloud Platform (GCP): Cloud-based auto-scaling platform by Google
    • Google Cloud Storage (GCS): Data Lake
    • BigQuery: Data Warehouse
  • Terraform: Infrastructure-as-Code (IaC)
  • Docker: Containerization
  • SQL: Data Analysis & Exploration
  • Airflow: Pipeline Orchestration
  • dbt: Data Transformation
  • Spark: Distributed Processing
  • Kafka: Streaming

Prerequisites

To get most out of this course, you should feel comfortable with coding and command line, and know the basics of SQL. Prior experience with Python will be helpful, but you can pick Python relatively fast if you have experience with other programming languages.

Prior experience with data engineering is not required.

Instructors

Tools

For this course you'll need to have the following software installed on your computer:

  • Docker and Docker-Compose
  • Python 3 (e.g. via Anaconda)
  • Google Cloud SDK
  • Terraform

See Week 1 for more details about installing these tools

FAQ

  • Q: I registered, but haven't received a confirmation email. Is it normal? A: Yes, it's normal. It's not automated. But you will receive an email eventually
  • Q: At what time of the day will it happen? A: Office hours will happen on Mondays at 17:00 CET. But everything will be recorded, so you can watch it whenever it's convenient for you
  • Q: Will there be a certificate? A: Yes, if you complete the project
  • Q: I'm 100% not sure I'll be able to attend. Can I still sign up? A: Yes, please do! You'll receive all the updates and then you can watch the course at your own pace.
  • Q: Do you plan to run a ML engineering course as well? A: Glad you asked. We do :)
  • Q: I'm stuck! I've got a technical question! A: Ask on Slack! And check out the student FAQ; many common issues have been answered already. If your issue is solved, please add how you solved it to the document. Thanks!

Our friends

Big thanks to other communities for helping us spread the word about the course:

Check them out - they are cool!

Owner
DataTalksClub
The place to talk about data
DataTalksClub
CPython extension implementing Shared Transactional Memory with native-looking interface

CPython extension implementing Shared Transactional Memory with native-looking interface

21 Jul 22, 2022
ioztat is a storage load analysis tool for OpenZFS

ioztat is a storage load analysis tool for OpenZFS. It provides iostat-like statistics at an individual dataset/zvol level.

Jim Salter 116 Nov 25, 2022
Have an idea for a Python package? Register the name on PyPI 💡

Register Package Names on PyPI Have an idea for a Python package? Thought of a great name? Register it on PyPI, before someone else does! A tool that

Alex Ioannides 1 Jul 15, 2022
Learning a Little about Containerlab

Learning a Little about Containerlab Hello all. This is the respository based on this blog post. Getting Started Feel free to use this example. You wi

10 Oct 16, 2022
My solutions for Advent of Code 2021 🌟🎄

🌟 Advent of Code 2021 🎄 My solutions for Advent of Code 2021. About · What is Advent of Code? · Contents · Usage · Table of puzzles (TODO: add final

Amanda P. Pinha 2 Dec 05, 2022
Stocks Trading News Alert Using Python

Stocks-Trading-News-Alert-Using-Python Ever Thought of Buying Shares of your Dream Company, When their stock price got down? But It is not possible to

Ayush Verma 3 Jul 29, 2022
Git Hooks Tutorial.

Git Hooks Tutorial My public talk about this project at Sberloga: Git Hooks Is All You Need 1. Git Hooks 101 Init git repo: mkdir git_repo cd git_repo

Dani El-Ayyass 17 Oct 12, 2022
Different steganography methods with examples and my own small image database

literally-the-most-useless-project [Different steganography methods with examples and my own small image database] This project currently contains thr

Kamyishka 1 Dec 09, 2022
Superset custom path for python

It is a common requirement to have superset running under a base url, (https://mydomain.at/analytics/ instead of https://mydomain.at/). I created the

9 Dec 14, 2022
Fuzz introspector for python

Fuzz introspector High-level goals: Show fuzzing-relevant data about each function in a given project Show reachability of fuzzer(s) Integrate seamles

14 Mar 25, 2022
Python language from the beginning.

Python For Beginners Python Programming Language ♦️ Python is a very powerful and user friendly programming language. ❄️ ♦️ There are some basic sytax

Randula Yashasmith Mawaththa 6 Sep 18, 2022
This is a Blender 2.9 script for importing mixamo Models to Godot-3

Mixamo-To-Godot This is a Blender 2.9 script for importing mixamo Models to Godot-3 The script does the following things Imports the mixamo models fro

8 Sep 02, 2022
A Way to Use Python, Easier.

PyTools A Way to Use Python, Easier. How to Install Just copy this code, then make a new file in your project directory called PyTools.py, then paste

Kamran 2 Aug 15, 2022
Pseudometa's dotfiles

pseudometa's dotfiles Table of Contents Why this repository? How this Repository works Special Explanations Got an idea for an improvement? Contact Wh

pseudometa 23 Dec 27, 2022
Traffic flow test platform, especially for reinforcement learning

Traffic Flow Test Platform Traffic flow test platform, especially for reinforcement learning, named TFTP. A traffic signal control framework that can

4 Nov 07, 2022
A tool to build reproducible wheels for you Python project or for all of your dependencies

asaman: Amra Saman (আমরা সমান) This is a tool to build reproducible wheels for your Python project or for all of your dependencies. What this means is

Kushal Das 14 Aug 05, 2022
An ultra fast cross-platform multiple screenshots module in pure Python using ctypes.

Python MSS from mss import mss # The simplest use, save a screen shot of the 1st monitor with mss() as sct: sct.shot() An ultra fast cross-platfo

Mickaël Schoentgen 799 Dec 30, 2022
Something like Asteroids but not really, done in CircuitPython

CircuitPython Staroids Something like Asteroids, done in CircuitPython. Works with FunHouse, MacroPad, Pybadge, EdgeBadge, CLUE, and Pygamer. circuitp

Tod E. Kurt 14 May 31, 2022
Scripts to integrate DFIR-IRIS, MISP and TimeSketch

Scripts to integrate DFIR-IRIS, MISP and TimeSketch

Koen Van Impe 20 Dec 16, 2022
importlib_resources is a backport of Python standard library importlib.resources module for older Pythons.

importlib_resources is a backport of Python standard library importlib.resources module for older Pythons. The key goal of this module is to replace p

Python 36 Dec 13, 2022