Omniverse sample scripts - A guide for developing with Python scripts on NVIDIA Ominverse

Overview

Omniverse sample scripts

ここでは、NVIDIA Omniverse ( https://www.nvidia.com/ja-jp/omniverse/ ) のスクリプトのサンプルを貯めていってます。
Omniverseは、データ構造としてUSDを使用してます。
3Dモデルやシーンのファイルへの保存、読み込みでUSDが使用されるだけでなく、
Omniverse CreateやOmniverse ViewなどのOmniverseアプリのビュー上の制御もUSDを介して行われます(形状の表示/非表示の切り替えや移動など)。

ここでは、OmniverseアプリであるOmniverse CreateのScript Editorで試せるスクリプトのサンプルを用途別に列挙します。
Omniverse Create 2021.3.8で確認しました。

開発の参考サイト

Omniverseの情報は、Omniverse Launcherがポータルになっています。
ここのLEARNにチュートリアル動画やドキュメントなどが列挙されています。

NVIDIA Omniverse Developer Resource Center

https://developer.nvidia.com/nvidia-omniverse-developer-resource-center

Omniverse開発の入口となるサイトです。
全体的に何ができて何が重要か、というのは俯瞰して見ることができます。

はじめに

Omniverse Createで、メインメニューの [Window] - [Script Editor]を選択して、Script Editorを起動します。

omniverse_script_editor_01.png

この中でPythonを使用してプログラムを書きます。
左下のRunボタンを押すか、[Ctrl] +[Enter]キーを押すことで実行します。

以下、Pythonの初歩的な説明です。

コメント

1行のコメントの場合、"#"から行の末尾までがコメントになります。

# comment.

複数行の場合は、""" から """ までがコメントになります。

"""
comment.
line2.
"""

print

デバッグ用のメッセージはprintで記載します。

print('Hello Omniverse !')

学習のための知識

機能説明用のサンプル

サンプル 説明
Camera カメラ操作
Geometry ジオメトリの作成
Material マテリアルの割り当て
Math ベクトル/行列計算関連
Operation Ominverseの操作情報を取得/イベント処理
Physics Physics(物理)処理
pip_archive Pythonのよく使われるモジュールの使用
Prim USDのPrim(ノード)の操作
Rendering レンダリング画像の取得
Scene シーン情報の取得
Settings 設定の取得
System システム関連情報の取得
UI UI操作

ツール的なサンプル

サンプル 説明
Samples サンプルスクリプト

Extension

サンプル 説明
Extensions サンプルExtension
Owner
ft-lab (Yutaka Yoshisaka)
ft-lab (Yutaka Yoshisaka)
Transformers provides thousands of pretrained models to perform tasks on different modalities such as text, vision, and audio.

English | 简体中文 | 繁體中文 | 한국어 State-of-the-art Machine Learning for JAX, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained models

Clara Meister 50 Nov 12, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street

PINN(s): Physics-Informed Neural Network(s) for von Karman vortex street This is

ShotaDEGUCHI 2 Apr 18, 2022
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
Code for DeepCurrents: Learning Implicit Representations of Shapes with Boundaries

DeepCurrents | Webpage | Paper DeepCurrents: Learning Implicit Representations of Shapes with Boundaries David Palmer*, Dmitriy Smirnov*, Stephanie Wa

Dima Smirnov 36 Dec 08, 2022
A study project using the AA-RMVSNet to reconstruct buildings from multiple images

3d-building-reconstruction This is part of a study project using the AA-RMVSNet to reconstruct buildings from multiple images. Introduction It is exci

17 Oct 17, 2022
Dataset and Source code of paper 'Enhancing Keyphrase Extraction from Academic Articles with their Reference Information'.

Enhancing Keyphrase Extraction from Academic Articles with their Reference Information Overview Dataset and code for paper "Enhancing Keyphrase Extrac

15 Nov 24, 2022
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022
EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network

EPSANet:An Efficient Pyramid Split Attention Block on Convolutional Neural Network This repo contains the official Pytorch implementaion code and conf

Hu Zhang 175 Jan 07, 2023
A robust pointcloud registration pipeline based on correlation.

PHASER: A Robust and Correspondence-Free Global Pointcloud Registration Ubuntu 18.04+ROS Melodic: Overview Pointcloud registration using correspondenc

ETHZ ASL 101 Dec 01, 2022
Fast mesh denoising with data driven normal filtering using deep variational autoencoders

Fast mesh denoising with data driven normal filtering using deep variational autoencoders This is an implementation for the paper entitled "Fast mesh

9 Dec 02, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
PyTorch code for ICPR 2020 paper Future Urban Scene Generation Through Vehicle Synthesis

Future urban scene generation through vehicle synthesis This repository contains Pytorch code for the ICPR2020 paper "Future Urban Scene Generation Th

Alessandro Simoni 4 Oct 11, 2021
Official Pytorch implementation of RePOSE (ICCV2021)

RePOSE: Iterative Rendering and Refinement for 6D Object Detection (ICCV2021) [Link] Abstract We present RePOSE, a fast iterative refinement method fo

Shun Iwase 68 Nov 15, 2022
Video Frame Interpolation without Temporal Priors (a general method for blurry video interpolation)

Video Frame Interpolation without Temporal Priors (NeurIPS2020) [Paper] [video] How to run Prerequisites NVIDIA GPU + CUDA 9.0 + CuDNN 7.6.5 Pytorch 1

YoujianZhang 31 Sep 04, 2022
The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation.

TME The source codes for TME-BNA: Temporal Motif-Preserving Network Embedding with Bicomponent Neighbor Aggregation. Our implementation is based on TG

2 Feb 10, 2022
A library for building and serving multi-node distributed faiss indices.

About Distributed faiss index service. A lightweight library that lets you work with FAISS indexes which don't fit into a single server memory. It fol

Meta Research 170 Dec 30, 2022