Training data extraction on GPT-2

Overview

Training data extraction from GPT-2

This repository contains code for extracting training data from GPT-2, following the approach outlined in the following paper:

Extracting Training Data from Large Language Models
Nicholas Carlini, Florian Tramèr, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, Alina Oprea, and Colin Raffel
USENIX Security Symposium, 2021
https://arxiv.org/abs/2012.07805

WARNING: The experiments in our paper relied on different non-public codebases, and also involved a large amount of manual labor. The code in this repository is thus not meant to exactly reproduce the paper's results, but instead to illustrate the paper's approach and to help others perform similar experiments.
The code in this repository has not been tested at the scale considered in the paper (600,000 generated samples) and might find memorized content at a lower (or higher) rate!

Installation

You will need transformers, pytorch and tqdm. The code was tested with transformers v3.0.2 and torch v1.5.1.

Extracting Data

Simply run

python3 extraction.py --N 1000 --batch-size 10

to generate 1000 samples with GPT-2 (XL). The samples are generated with top-k sampling (k=40) and an empty prompt.

The generated samples are ranked according to four membership inference metrics introduced in our paper:

  • The log perplexity of the GPT-2 (XL) model.
  • The ratio of the log perplexities of the GPT-2 (XL) model and the GPT-2 (S) model.
  • The ratio of the log perplexities for the generated sample and the same sample in lower-case letters.
  • The ratio of the log perplexity of GPT-2 (XL) and the sample's entropy estimated by Zlib.

The top 10 samples according to each metric are printed out. These samples are likely to contain verbatim text from the GPT-2 training data.

Conditioning on Internet text

In our paper, we found that prompting GPT-2 with small snippets of text taken from the Web increased the chance of the model generating memorized content.

To reproduce this attack, first download a slice of the Common Crawl dataset:

./download_cc.sh

This will download a sample of the Crawl from May 2021 (~350 MB) to a file called commoncrawl.warc.wet.

Then, we can run the extraction attack with Internet prompts:

python3 extraction.py --N 1000 --internet-sampling --wet-file commoncrawl.warc.wet

Sample outputs

Some interesting data that we extracted from GPT-2 can be found here.

Note that these were found among 600,000 generated samples. If you generate a much smaller number of samples (10,000 for example), you will be less likely to find memorized content.

Citation

If this code is useful in your research, you are encouraged to cite our academic paper:

@inproceedings{carlini21extracting,
  author = {Carlini, Nicholas and Tramer, Florian and Wallace, Eric and Jagielski, Matthew and Herbert-Voss, Ariel and Lee, Katherine and Roberts, Adam and Brown, Tom and Song, Dawn and Erlingsson, Ulfar and Oprea, Alina and Raffel, Colin},
  title = {Extracting Training Data from Large Language Models},
  booktitle = {USENIX Security Symposium},
  year = {2021},
  howpublished = {arXiv preprint arXiv:2012.07805},
  url = {https://arxiv.org/abs/2012.07805}
}
Owner
Florian Tramer
Florian Tramer
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
Text and code for the forthcoming second edition of Think Bayes, by Allen Downey.

Think Bayes 2 by Allen B. Downey The HTML version of this book is here. Think Bayes is an introduction to Bayesian statistics using computational meth

Allen Downey 1.5k Jan 08, 2023
PyTorch implementation for "Sharpness-aware Quantization for Deep Neural Networks".

Sharpness-aware Quantization for Deep Neural Networks Recent Update 2021.11.23: We release the source code of SAQ. Setup the environments Clone the re

Zhuang AI Group 30 Dec 19, 2022
Fast and Easy Infinite Neural Networks in Python

Neural Tangents ICLR 2020 Video | Paper | Quickstart | Install guide | Reference docs | Release notes Overview Neural Tangents is a high-level neural

Google 1.9k Jan 09, 2023
Torch-mutable-modules - Use in-place and assignment operations on PyTorch module parameters with support for autograd

Torch Mutable Modules Use in-place and assignment operations on PyTorch module p

Kento Nishi 7 Jun 06, 2022
Course about deep learning for computer vision and graphics co-developed by YSDA and Skoltech.

Deep Vision and Graphics This repo supplements course "Deep Vision and Graphics" taught at YSDA @fall'21. The course is the successor of "Deep Learnin

Yandex School of Data Analysis 160 Jan 02, 2023
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
Implementing yolov4 target detection and tracking based on nao robot

Implementing yolov4 target detection and tracking based on nao robot

6 Apr 19, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021.

Off-Belief Learning Introduction This repo contains the implementation of the algorithm proposed in Off-Belief Learning, ICML 2021. Environment Setup

Facebook Research 32 Jan 05, 2023
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Python TFLite scripts for detecting objects of any class in an image without knowing their label.

Ibai Gorordo 42 Oct 07, 2022
Deep learning for spiking neural networks

A deep learning library for spiking neural networks. Norse aims to exploit the advantages of bio-inspired neural components, which are sparse and even

Electronic Vision(s) Group — BrainScaleS Neuromorphic Hardware 59 Nov 28, 2022
A Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Training Data》

RangeLoss Pytorch This is a Pytorch reproduction of Range Loss, which is proposed in paper 《Range Loss for Deep Face Recognition with Long-Tailed Trai

Youzhi Gu 7 Nov 27, 2021
PyTorch implementation of the YOLO (You Only Look Once) v2

PyTorch implementation of the YOLO (You Only Look Once) v2 The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorc

申瑞珉 (Ruimin Shen) 433 Nov 24, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Kieran Mackle 485 Jan 09, 2023