Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Overview

Blockchain-enabled Server-less Federated Learning

Repository containing the files used to reproduce the results of the publication "Blockchain-enabled Server-less Federated Learning".

''BibTeX'' citation:

@article{wilhelmi2021blockchain,
  title={Blockchain-enabled Server-less Federated Learning},
  author={Wilhelmi, Francesc, Giupponi, Lorenza and Dini, Paolo},
  journal={arXiv preprint arXiv:2112.07938
},
  year={2021}
}

Table of Contents

Authors

Abstract

Motivated by the heterogeneous nature of devices participating in large-scale Federated Learning (FL) optimization, we focus on an asynchronous server-less FL solution empowered by Blockchain (BC) technology. In contrast to mostly adopted FL approaches, which assume synchronous operation, we advocate an asynchronous method whereby model aggregation is done as clients submit their local updates. The asynchronous setting fits well with the federated optimization idea in practical large-scale settings with heterogeneous clients. Thus, it potentially leads to higher efficiency in terms of communication overhead and idle periods. To evaluate the learning completion delay of BC-enabled FL, we provide an analytical model based on batch service queue theory. Furthermore, we provide simulation results to assess the performance of both synchronous and asynchronous mechanisms. Important aspects involved in the BC-enabled FL optimization, such as the network size, link capacity, or user requirements, are put together and analyzed. As our results show, the synchronous setting leads to higher prediction accuracy than the asynchronous case. Nevertheless, asynchronous federated optimization provides much lower latency in many cases, thus becoming an appealing FL solution when dealing with large data sets, tough timing constraints (e.g., near-real-time applications), or highly varying training data.

Repository description

This repository contains the resources used to generate the results included in the paper entitled "Blockchain-enabled Server-less Federated Learning". The files included in this repository are:

  1. LaTeX files: contains the files used to generate the manuscript.
  2. Code & Results: scripts and code used to generate the results included in the paper.
  • Queue code: scripts used to execute the Blockchain queuing delay simulations through the batch-service queue simulator.
  • TensorFlow code: python scripts used to execute the FL mechanisms through TensorFlowFederated.
  • Matlab code: matlab scripts used to process the results and plot the figures included in the manuscript.
  • Outputs: files containing the outputs from the different resources (queue simulator, TFF).
  • Figures: figures included in the manuscript and others with preliminary results.

Usage

Part 1: Batch service queue analysis

To generate the results related to the analysis of the queueing delay in the Blockchain, we used our batch-service queue simulator (commit: f846b66). Please, refer to that repository's documentation for installation/execution guidelines. As for the corresponding theoretical background, more details can be found in [1].

The obtained results from this part can be found at "Matlab code/output_queue_simulator". To reproduce them, execute the scripts from the "Batch service queue" folder in the batch-service queue simulator.

Part 2: FLchain analysis

Tensorflow Federated (TFF) has been used to evaluate the proposed s-FLchain and a-FLchain mechanisms in the manuscript. To get started with TF (and TFF), we strongly recommend using the tutorials in https://www.tensorflow.org/federated/tutorials/tutorials_overview.

Once the TFF environment has been setup, our results can be reproduced by using the scripts in "TensorFlow code":

  1. centalized_baseline.py: centralized ML model for getting baseline results (upper/lower bounds).
  2. sFLchain_vs_aFLchain.py: script generating the output for the comparison of the synchronous and the asynchronous models.

The output results from this part can be found at "Matlab code/output_tensorflow".

Part 3: End-to-end analysis framework

Finally, to gather all the resources together, we have used the end-to-end latency framework contained in this repository ("Matlab code/simulation_scripts"). Those files contain the communication and computation models used to calculate the total latency experienced by each considered Blockchain-enabled FL mechanism. Moreover, to get the end-to-end latency and accuracy results, the abovementioned scripts gather and process the outputs obtained from both batch-service queue simulator and TFF.

Content:

  1. 0_preliminary_results: evaluation of several FL parameters via TFF (out of the scope of this publication).
  2. 1_blockchain_analysis: evaluation of the Blockchain queuing delay (refer to Part 1: Batch service queue analysis).
  3. 2_flchain: evaluation of the FL accuracy (refer to Part 2: FLchain analysis) and end-to-end latency analysis. Includes models to compute communication and computation-related delays.

Performance Evaluation

Simulation parameters

The simulation parameters used in the publication are as follows:

Parameter Value
Number of miners 19
Transaction size 5 kbits
BC Block header size 20 kbits
Max. waiting time 1000 seconds
Queue length 1000 packets
--------- --------------------------------------- ----------------------
Min/max distance Client-BS 0/4.15 meters
Bandwidth. 180 kHz
Min/max distance Client-BS 2 GHz
Min/max distance Client-BS 0 dBi
Comm. Loss at the reference distance (P_L0) 5 dB
Path-loss exponent (α) 4.4
Shadowing factor (σ) 9.5
Obstacles factor (γ) 30
Ground noise -95 dBm
Capacity P2P links 5 Mbps
--------- --------------------------------------- ----------------------
Learning algorithm Neural Network
Number of hidden layers 2
Activation function ReLU
Optimizer SGD
Loss function Cat. cross-entropy
ML Learning rate (local/global) 0.01/1
Epochs number 5
Batch size 20
CPU cycles to process a data point 10^-5
Clients' clock speed 1 GHz

Simulation Results

In what follows, we present the results presented in the manuscript. First, we refer to the Blockchain queuing delay analysis, where we assess the sensitivity of the Blockchain on various parameters, including the block size, the mining rate, the traffic intensity, or the miners' communication capacity.

Next, we provide a broader vision of the Blockchain transaction confirmation latency by including other delays different than the queuing delay, such as transaction upload, block generation, or block propagation.

Finally, we present the results obtained for the evaluation of s-FLchain and a-FLchain in terms of learning accuracy and learning completion time:

References

[1] Wilhelmi, F., & Giupponi, L. (2021). Discrete-Time Analysis of Wireless Blockchain Networks. arXiv preprint arXiv:2104.05586.

Contribute

If you want to contribute, please contact to [email protected].

Owner
Francesc Wilhelmi
PhD Student at the Wireless Networking Research Group (Universitat Pompeu Fabra)
Francesc Wilhelmi
Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification

Dealing With Misspecification In Fixed-Confidence Linear Top-m Identification This repository is the official implementation of [Dealing With Misspeci

0 Oct 25, 2021
OCR Post Correction for Endangered Language Texts

📌 Coming soon: an update to the software including features from our paper on semi-supervised OCR post-correction, to be published in the Transaction

Shruti Rijhwani 96 Dec 31, 2022
Independent and minimal implementations of some reinforcement learning algorithms using PyTorch (including PPO, A3C, A2C, ...).

PyTorch RL Minimal Implementations There are implementations of some reinforcement learning algorithms, whose characteristics are as follow: Less pack

Gemini Light 4 Dec 31, 2022
Machine learning notebooks in different subjects optimized to run in google collaboratory

Notebooks Name Description Category Link Training pix2pix This notebook shows a simple pipeline for training pix2pix on a simple dataset. Most of the

Zaid Alyafeai 363 Dec 06, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
FOSS Digital Asset Distribution Platform built on Frappe.

Digistore FOSS Digital Assets Marketplace. Distribute digital assets, like a pro. Video Demo Here Features Create, attach and list digital assets (PDF

Mohammad Hussain Nagaria 30 Dec 08, 2022
Aligning Latent and Image Spaces to Connect the Unconnectable

About This repo contains the official implementation of the Aligning Latent and Image Spaces to Connect the Unconnectable paper. It is a GAN model whi

Ivan Skorokhodov 203 Jan 03, 2023
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
《Truly shift-invariant convolutional neural networks》(2021)

Truly shift-invariant convolutional neural networks [Paper] Authors: Anadi Chaman and Ivan Dokmanić Convolutional neural networks were always assumed

Anadi Chaman 46 Dec 19, 2022
PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE).

GRACE The official PyTorch implementation of deep GRAph Contrastive rEpresentation learning (GRACE). For a thorough resource collection of self-superv

Big Data and Multi-modal Computing Group, CRIPAC 186 Dec 27, 2022
The code release of paper Low-Light Image Enhancement with Normalizing Flow

[AAAI 2022] Low-Light Image Enhancement with Normalizing Flow Paper | Project Page Low-Light Image Enhancement with Normalizing Flow Yufei Wang, Renji

Yufei Wang 176 Jan 06, 2023
Brain tumor detection using CNN (InceptionResNetV2 Model)

Brain-Tumor-Detection Building a detection model using a convolutional neural network in Tensorflow & Keras. Used brain MRI images. InceptionResNetV2

1 Feb 13, 2022
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
code for EMNLP 2019 paper Text Summarization with Pretrained Encoders

PreSumm This code is for EMNLP 2019 paper Text Summarization with Pretrained Encoders Updates Jan 22 2020: Now you can Summarize Raw Text Input!. Swit

Yang Liu 1.2k Dec 28, 2022
Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

Code to reproduce the results for Statistically Robust Neural Network Classification, published in UAI 2021

1 Jun 02, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023