Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

Related tags

Deep LearningM3D-VTON
Overview

M3D-VTON: A Monocular-to-3D Virtual Try-On Network

Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

Paper | Supplementary | MPV3D Dataset | Pretrained Models

M3D-VTON

Requirements

python >= 3.8.0, pytorch == 1.6.0, torchvision == 0.7.0

Data Processing

After downloading the MPV3D Dataset, please run the following script to preprocess the data:

python util/data_preprocessing.py --MPV3D_root path/to/MPV3D/dataset

Running Inference

We provide demo inputs under the mpv3d_example folder, where the target clothing and the reference person are like:

Demo inputs

with inputs from the mpv3d_example folder, the easiest way to get start is to use the pretrained models and sequentially run the four steps below:

1. Testing MTM Module

python test.py --model MTM --name MTM --dataroot mpv3d_example --datalist test_pairs --results_dir results

2. Testing DRM Module

python test.py --model DRM --name DRM --dataroot mpv3d_example --datalist test_pairs --results_dir results

3. Testing TFM Module

python test.py --model TFM --name TFM --dataroot mpv3d_example --datalist test_pairs --results_dir results

4. Getting colored point cloud and Remeshing

(Note: since the back-side person images are unavailable, in rgbd2pcd.py we provide a fast face inpainting function that produces the mirrored back-side image after a fashion. One may need manually inpaint other back-side texture areas to achieve better visual quality.)

python rgbd2pcd.py

Now you should get the point cloud file prepared for remeshing under results/aligned/pcd/test_pairs/*.ply. MeshLab can be used to remesh the predicted point cloud, with two simple steps below:

  • Normal Estimation: Open MeshLab and load the point cloud file, and then go to Filters --> Normals, Curvatures and Orientation --> Compute normals for point sets

  • Possion Remeshing: Go to Filters --> Remeshing, Simplification and Reconstruction --> Surface Reconstruction: Screen Possion (set reconstruction depth = 9)

Now the final 3D try-on result should be obtained:

Try-on Result

Training on MPV3D Dataset

With the pre-processed MPV3D dataset, you can train the model from scratch by folllowing the three steps below:

1. Train MTM module

python train.py --model MTM --name MTM --dataroot path/to/MPV3D/data --datalist train_pairs --checkpoints_dir path/for/saving/model

then run the command below to obtain the --warproot (here refers to the --results_dir) which is necessary for the other two modules:

python test.py --model MTM --name MTM --dataroot path/to/MPV3D/data --datalist train_pairs --checkpoints_dir path/to/saved/MTMmodel --results_dir path/for/saving/MTM/results

2. Train DRM module

python train.py --model DRM --name DRM --dataroot path/to/MPV3D/data --warproot path/to/MTM/warp/cloth --datalist train_pairs --checkpoints_dir path/for/saving/model

3. Train TFM module

python train.py --model TFM --name TFM --dataroot path/to/MPV3D/data --warproot path/to/MTM/warp/cloth --datalist train_pairs --checkpoints_dir path/for/saving/model

(See options/base_options.py and options/train_options.py for more training options.)

License

The use of this code and the MPV3D dataset is RESTRICTED to non-commercial research and educational purposes.

Citation

If our code is helpful to your research, please cite:

@article{Zhao2021M3DVTONAM,
  title={M3D-VTON: A Monocular-to-3D Virtual Try-On Network},
  author={Fuwei Zhao and Zhenyu Xie and Michael C. Kampffmeyer and Haoye Dong and Songfang Han and Tianxiang Zheng and Tao Zhang and Xiaodan Liang},
  journal={ArXiv},
  year={2021},
  volume={abs/2108.05126}
}
PyTorch Implementation of Realtime Multi-Person Pose Estimation project.

PyTorch Realtime Multi-Person Pose Estimation This is a pytorch version of Realtime_Multi-Person_Pose_Estimation, origin code is here Realtime_Multi-P

Dave Fang 157 Nov 12, 2022
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
This repository focus on Image Captioning & Video Captioning & Seq-to-Seq Learning & NLP

Awesome-Visual-Captioning Table of Contents ACL-2021 CVPR-2021 AAAI-2021 ACMMM-2020 NeurIPS-2020 ECCV-2020 CVPR-2020 ACL-2020 AAAI-2020 ACL-2019 NeurI

Ziqi Zhang 362 Jan 03, 2023
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

A boosting-based Multiple Instance Learning (MIL) package that includes MIL-Boost and MCIL-Boost

Jun-Yan Zhu 27 Aug 08, 2022
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
Few-shot Neural Architecture Search

One-shot Neural Architecture Search uses a single supernet to approximate the performance each architecture. However, this performance estimation is super inaccurate because of co-adaption among oper

Yiyang Zhao 38 Oct 18, 2022
ML-Decoder: Scalable and Versatile Classification Head

ML-Decoder: Scalable and Versatile Classification Head Paper Official PyTorch Implementation Tal Ridnik, Gilad Sharir, Avi Ben-Cohen, Emanuel Ben-Baru

189 Jan 04, 2023
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Data, model training, and evaluation code for "PubTables-1M: Towards a universal dataset and metrics for training and evaluating table extraction models".

PubTables-1M This repository contains training and evaluation code for the paper "PubTables-1M: Towards a universal dataset and metrics for training a

Microsoft 365 Jan 04, 2023
Tensorflow2.0 🍎🍊 is delicious, just eat it! 😋😋

How to eat TensorFlow2 in 30 days ? 🔥 🔥 Click here for Chinese Version(中文版) 《10天吃掉那只pyspark》 🚀 github项目地址: https://github.com/lyhue1991/eat_pyspark

lyhue1991 9.7k Jan 01, 2023
Fast Differentiable Matrix Sqrt Root

Fast Differentiable Matrix Sqrt Root Geometric Interpretation of Matrix Square Root and Inverse Square Root This repository constains the official Pyt

YueSong 42 Dec 30, 2022
Python and Julia in harmony.

PythonCall & JuliaCall Bringing Python® and Julia together in seamless harmony: Call Python code from Julia and Julia code from Python via a symmetric

Christopher Rowley 414 Jan 07, 2023
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

UNION Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please

50 Dec 30, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023