Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

Overview

CLIP-GLaSS

Repository for the paper Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search

An in-browser demo is available here

Installation

Clone this repository

git clone https://github.com/galatolofederico/clip-glass && cd clip-glass

Create a virtual environment and install the requirements

virtualenv --python=python3.6 env && . ./env/bin/activate
pip install -r requirements.txt

Run CLIP-GLaSS

You can run CLIP-GLaSS with:

python run.py --config  --target 

Specifying and according to the following table:

Config Meaning Target Type
GPT2 Use GPT2 to solve the Image-to-Text task Image
DeepMindBigGAN512 Use DeepMind's BigGAN 512x512 to solve the Text-to-Image task Text
DeepMindBigGAN256 Use DeepMind's BigGAN 256x256 to solve the Text-to-Image task Text
StyleGAN2_ffhq_d Use StyleGAN2-ffhq to solve the Text-to-Image task Text
StyleGAN2_ffhq_nod Use StyleGAN2-ffhq without Discriminator to solve the Text-to-Image task Text
StyleGAN2_church_d Use StyleGAN2-church to solve the Text-to-Image task Text
StyleGAN2_church_nod Use StyleGAN2-church without Discriminator to solve the Text-to-Image task Text
StyleGAN2_car_d Use StyleGAN2-car to solve the Text-to-Image task Text
StyleGAN2_car_nod Use StyleGAN2-car without Discriminator to solve the Text-to-Image task Text

If you do not have downloaded the models weights you will be prompted to run ./download-weights.sh You will find the results in the folder ./tmp, a different output folder can be specified with --tmp-folder

Examples

python run.py --config StyleGAN2_ffhq_d --target "the face of a man with brown eyes and stubble beard"
python run.py --config GPT2 --target gpt2_images/dog.jpeg

Acknowledgments and licensing

This work heavily relies on the following amazing repositories and would have not been possible without them:

All their work can be shared under the terms of the respective original licenses.

All my original work (everything except the content of the folders clip, stylegan2 and gpt2) is released under the terms of the GNU/GPLv3 license. Coping, adapting e republishing it is not only consent but also encouraged.

Citing

If you want to cite use you can use this BibTeX

@article{galatolo_glass
,	author	= {Galatolo, Federico A and Cimino, Mario GCA and Vaglini, Gigliola}
,	title	= {Generating images from caption and vice versa via CLIP-Guided Generative Latent Space Search}
,	year	= {2021}
}

Contacts

For any further question feel free to reach me at [email protected] or on Telegram @galatolo

Owner
Federico Galatolo
PhD Student @ University of Pisa
Federico Galatolo
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
RID-Noise: Towards Robust Inverse Design under Noisy Environments

This is code of RID-Noise. Reproduce RID-Noise Results Toy tasks Please refer to the notebook ridnoise.ipynb to view experiments on three toy tasks. B

Thyrix 2 Nov 23, 2022
NeurIPS workshop paper 'Counter-Strike Deathmatch with Large-Scale Behavioural Cloning'

Counter-Strike Deathmatch with Large-Scale Behavioural Cloning Tim Pearce, Jun Zhu Offline RL workshop, NeurIPS 2021 Paper: https://arxiv.org/abs/2104

Tim Pearce 169 Dec 26, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
CPU inference engine that delivers unprecedented performance for sparse models

The DeepSparse Engine is a CPU runtime that delivers unprecedented performance by taking advantage of natural sparsity within neural networks to reduce compute required as well as accelerate memory b

Neural Magic 1.2k Jan 09, 2023
用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本和PARL(paddle)版本

用强化学习玩合成大西瓜 代码地址:https://github.com/Sharpiless/play-daxigua-using-Reinforcement-Learning 用强化学习DQN算法,训练AI模型来玩合成大西瓜游戏,提供Keras版本、PARL(paddle)版本和pytorch版本

72 Dec 17, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
This repository attempts to replicate the SqueezeNet architecture and implement the same on an image classification task.

SqueezeNet-Implementation This repository attempts to replicate the SqueezeNet architecture using TensorFlow discussed in the research paper: "Squeeze

Rohan Mathur 3 Dec 13, 2022
A TensorFlow 2.x implementation of Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders Are Scalable Vision Learners A TensorFlow implementation of Masked Autoencoders Are Scalable Vision Learners [1]. Our implementati

Aritra Roy Gosthipaty 59 Dec 10, 2022
Facial recognition project

Facial recognition project documentation Project introduction This project is developed by linuxu. It is a face model recognition project developed ba

Jefferson 2 Dec 04, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
A MatConvNet-based implementation of the Fully-Convolutional Networks for image segmentation

MatConvNet implementation of the FCN models for semantic segmentation This package contains an implementation of the FCN models (training and evaluati

VLFeat.org 175 Feb 18, 2022
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
Official Pytorch implementation of "Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral)"

Learning Debiased Representation via Disentangled Feature Augmentation (Neurips 2021, Oral): Official Project Webpage This repository provides the off

Kakao Enterprise Corp. 68 Dec 17, 2022
Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

Ursa Zrimsek 2 Dec 14, 2022
[ICCV 2021] Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neural Networks in Frequency Domain

Amplitude-Phase Recombination (ICCV'21) Official PyTorch implementation of "Amplitude-Phase Recombination: Rethinking Robustness of Convolutional Neur

Guangyao Chen 53 Oct 05, 2022
Official Pytorch Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images.

IAug_CDNet Official Implementation of Adversarial Instance Augmentation for Building Change Detection in Remote Sensing Images. Overview We propose a

53 Dec 02, 2022