Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

Overview

CAPE 🌴 pylint pytest

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Setup 🔧

Minimum requirements:

torch >= 1.10.0

Install from source:

git clone https://github.com/gcambara/cape.git
cd cape
pip install --editable ./

Usage 📖

Ready to go along with PyTorch's official implementation of Transformers. Default initialization behaves identically as sinusoidal positional embeddings, summing them up to your content embeddings:

from torch import nn
from cape import CAPE1d

pos_emb = CAPE1d(d_model=512)
transformer = nn.Transformer(d_model=512)

x = torch.randn(10, 32, 512) # seq_len, batch_size, n_feats
x = pos_emb(x) # forward sums the positional embedding by default
x = transformer(x)

Alternatively, you can get positional embeddings separately

x = torch.randn(10, 32, 512)
pos_emb = pos_emb.compute_pos_emb(x)

scale = 512**0.5
x = (scale * x) + pos_emb
x = transformer(x)

Let's see a few examples of CAPE initialization for different modalities, inspired by the original paper experiments.

CAPE for text 🔤

CAPE1d is ready to be applied to text. Keep max_local_shift between 0 and 0.5 to shift local positions without disordering them.

from cape import CAPE1d
pos_emb = CAPE1d(d_model=512, max_global_shift=5.0, 
                 max_local_shift=0.5, max_global_scaling=1.03, 
                 normalize=False)

x = torch.randn(10, 32, 512) # seq_len, batch_size, n_feats
x = pos_emb(x)

Padding is supported by indicating the length of samples in the forward method, with the x_lengths argument. For example, the original length of samples is 7, although they have been padded to sequence length 10.

x = torch.randn(10, 32, 512) # seq_len, batch_size, n_feats
x_lengths = torch.ones(32)*7
x = pos_emb(x, x_lengths=x_lengths)

CAPE for audio 🎙️

CAPE1d for audio is applied similarly to text. Use positions_delta argument to set the separation in seconds between time steps, and x_lengths for indicating sample durations in case there is padding.

For instance, let's consider no padding and same hop size (30 ms) at every sample in the batch:

# Max global shift is 60 s.
# Max local shift is set to 0.5 to maintain positional order.
# Max global scaling is 1.1, according to WSJ recipe.
# Freq scale is 30 to ensure that 30 ms queries are possible with long audios
from cape import CAPE1d
pos_emb = CAPE1d(d_model=512, max_global_shift=60.0, 
                 max_local_shift=0.5, max_global_scaling=1.1, 
                 normalize=True, freq_scale=30.0)

x = torch.randn(100, 32, 512) # seq_len, batch_size, n_feats
positions_delta = 0.03 # 30 ms of stride
x = pos_emb(x, positions_delta=positions_delta)

Now, let's imagine that the original duration of all samples is 2.5 s, although they have been padded to 3.0 s. Hop size is 30 ms for every sample in the batch.

x = torch.randn(100, 32, 512) # seq_len, batch_size, n_feats

duration = 2.5
positions_delta = 0.03
x_lengths = torch.ones(32)*duration
x = pos_emb(x, x_lengths=x_lengths, positions_delta=positions_delta)

What if the hop size is different for every sample in the batch? E.g. first half of the samples have stride of 30 ms, and the second half of 50 ms.

positions_delta = 0.03
positions_delta = torch.ones(32)*positions_delta
positions_delta[16:] = 0.05
x = pos_emb(x, positions_delta=positions_delta)
positions_delta
tensor([0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300,
        0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0300, 0.0500, 0.0500,
        0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500, 0.0500,
        0.0500, 0.0500, 0.0500, 0.0500, 0.0500])

Lastly, let's consider a very rare case, where hop size is different for every sample in the batch, and is not constant within some samples. E.g. stride of 30 ms for the first half of samples, and 50 ms for the second half. However, the hop size of the very first sample linearly increases for each time step.

from einops import repeat
positions_delta = 0.03
positions_delta = torch.ones(32)*positions_delta
positions_delta[16:] = 0.05
positions_delta = repeat(positions_delta, 'b -> b new_axis', new_axis=100)
positions_delta[0, :] *= torch.arange(1, 101)
x = pos_emb(x, positions_delta=positions_delta)
positions_delta
tensor([[0.0300, 0.0600, 0.0900,  ..., 2.9400, 2.9700, 3.0000],
        [0.0300, 0.0300, 0.0300,  ..., 0.0300, 0.0300, 0.0300],
        [0.0300, 0.0300, 0.0300,  ..., 0.0300, 0.0300, 0.0300],
        ...,
        [0.0500, 0.0500, 0.0500,  ..., 0.0500, 0.0500, 0.0500],
        [0.0500, 0.0500, 0.0500,  ..., 0.0500, 0.0500, 0.0500],
        [0.0500, 0.0500, 0.0500,  ..., 0.0500, 0.0500, 0.0500]])

CAPE for ViT 🖼️

CAPE2d is used for embedding positions in image patches. Scaling of positions between [-1, 1] is done within the module, whether patches are square or non-square. Thus, set max_local_shift between 0 and 0.5, and the scale of local shifts will be adjusted according to the height and width of patches. Beyond values of 0.5 the order of positions might be altered, do this at your own risk!

from cape import CAPE2d
pos_emb = CAPE2d(d_model=512, max_global_shift=0.5, 
                 max_local_shift=0.5, max_global_scaling=1.4)

# Case 1: square patches
x = torch.randn(16, 16, 32, 512) # height, width, batch_size, n_feats
x = pos_emb(x)

# Case 2: non-square patches
x = torch.randn(24, 16, 32, 512) # height, width, batch_size, n_feats
x = pos_emb(x)

Citation ✍️

I just did this PyTorch implementation following the paper's Python code and the Flashlight recipe in C++. All the credit goes to the original authors, please cite them if you use this for your research project:

@inproceedings{likhomanenko2021cape,
title={{CAPE}: Encoding Relative Positions with Continuous Augmented Positional Embeddings},
author={Tatiana Likhomanenko and Qiantong Xu and Gabriel Synnaeve and Ronan Collobert and Alex Rogozhnikov},
booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
year={2021},
url={https://openreview.net/forum?id=n-FqqWXnWW}
}

Acknowledgments 🙏

Many thanks to the paper's authors for code reviewing and clarifying doubts about the paper and the implementation. :)

You might also like...
Implementation of
Implementation of "GNNAutoScale: Scalable and Expressive Graph Neural Networks via Historical Embeddings" in PyTorch

PyGAS: Auto-Scaling GNNs in PyG PyGAS is the practical realization of our G NN A uto S cale (GAS) framework, which scales arbitrary message-passing GN

Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

A PyTorch Implementation of
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

PyTorch implementation of the NIPS-17 paper
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Styled Augmented Translation
Styled Augmented Translation

SAT Style Augmented Translation Introduction By collecting high-quality data, we were able to train a model that outperforms Google Translate on 6 dif

TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)
Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments (CoRL 2020)

Motion Planner Augmented Reinforcement Learning for Robot Manipulation in Obstructed Environments [Project website] [Paper] This project is a PyTorch

Releases(v1.0.0)
Owner
Guillermo Cámbara
🎙️ PhD Candidate in Self-Supervised Learning + Speech Recognition @ Universitat Pompeu Fabra & Telefónica Research
Guillermo Cámbara
TensorFlow implementation of PHM (Parameterization of Hypercomplex Multiplication)

Parameterization of Hypercomplex Multiplications (PHM) This repository contains the TensorFlow implementation of PHM (Parameterization of Hypercomplex

Aston Zhang 9 Oct 26, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
[AAAI-2021] Visual Boundary Knowledge Translation for Foreground Segmentation

Trans-Net Code for (Visual Boundary Knowledge Translation for Foreground Segmentation, AAAI2021). [https://ojs.aaai.org/index.php/AAAI/article/view/16

ZJU-VIPA 2 Mar 04, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling

Hamiltonian Dynamics with Non-Newtonian Momentum for Rapid Sampling Code for the paper: Greg Ver Steeg and Aram Galstyan. "Hamiltonian Dynamics with N

Greg Ver Steeg 25 Mar 14, 2022
Implicit Graph Neural Networks

Implicit Graph Neural Networks This repository is the official PyTorch implementation of "Implicit Graph Neural Networks". Fangda Gu*, Heng Chang*, We

Heng Chang 48 Nov 29, 2022
TensorFlow 2 AI/ML library wrapper for openFrameworks

ofxTensorFlow2 This is an openFrameworks addon for the TensorFlow 2 ML (Machine Learning) library

Center for Art and Media Karlsruhe 96 Dec 31, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports"

Introduction: X-Ray Report Generation This repository is for our EMNLP 2021 paper "Automated Generation of Accurate & Fluent Medical X-ray Reports". O

no name 36 Dec 16, 2022
Generalized Proximal Policy Optimization with Sample Reuse (GePPO)

Generalized Proximal Policy Optimization with Sample Reuse This repository is the official implementation of the reinforcement learning algorithm Gene

Jimmy Queeney 9 Nov 28, 2022
Speed-Test - You can check your intenet speed using this tool

Speed-Test Tool By Hez_X AVAILABLE ON : Termux & Kali linux & Ubuntu (Linux E

Hez-X 3 Feb 17, 2022
The official repo for CVPR2021——ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search.

ViPNAS: Efficient Video Pose Estimation via Neural Architecture Search [paper] Introduction This is the official implementation of ViPNAS: Efficient V

Lumin 42 Sep 26, 2022
Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and Tracking of Object Poses in 3D Space"

Sparse Steerable Convolution (SS-Conv) Code for "Sparse Steerable Convolutions: An Efficient Learning of SE(3)-Equivariant Features for Estimation and

25 Dec 21, 2022
This is an official implementation for "DeciWatch: A Simple Baseline for 10x Efficient 2D and 3D Pose Estimation"

DeciWatch: A Simple Baseline for 10× Efficient 2D and 3D Pose Estimation This repo is the official implementation of "DeciWatch: A Simple Baseline for

117 Dec 24, 2022
Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Implementation of Vision Transformer, a simple way to achieve SOTA in vision classification with only a single transformer encoder, in Pytorch

Phil Wang 12.6k Jan 09, 2023
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

Wenhao Wang 89 Jan 02, 2023