ANNchor is a python library which constructs approximate k-nearest neighbour graphs for slow metrics.

Overview

ANNchor

A python library implementing ANNchor:
k-nearest neighbour graph construction for slow metrics.

User Guide

For user guide and documentation, go to /doc/_build/index.html



What is ANNchor?

ANNchor is a python library which constructs approximate k-nearest neighbour graphs for slow metrics. The k-NN graph is an extremely useful data structure that appears in a wide variety of applications, for example: clustering, dimensionality reduction, visualisation and exploratory data analysis (EDA). However, if we want to use a slow metric, these k-NN graphs can take an exceptionally long time to compute. Typical slow metrics include the Wasserstein metric (Earth Mover's distance) applied to images, and Levenshtein (Edit) distance on long strings, where the time taken to compute these distances is significantly longer than a typical Euclidean distance.

ANNchor uses Machine Learning methods to infer true distances between points in a data set from a variety of features derived from anchor points (aka landmarks/waypoints). In practice, this means that ANNchor does not make as many calls to the underlying metric as other state of the art k-NN graph generation techniques. This translates to quicker run times, especially when the metric is slow.

Results from ANNchor can easily be combined with other popular libraries in the Data Science community. In the docs we give examples of how to use ANNchor in an EDA pipeline alongside UMAP and HDBSCAN.

Installation

Clone this repo and install with pip:

pip install -e annchor/

Basic Usage

import numpy as np
import annchor

X =          #your data, list/np.array of items
distance =   #your distance function, distance(X[i],X[j]) = d

ann = annchor.Annchor(X,
                      distance,
                      n_anchors=15,
                      n_neighbors=15,
                      p_work=0.1)
ann.fit()

print(ann.neighbor_graph)

Examples

We demonstrate ANNchor by example, using Levenshtein distance on a data set of long strings. This data set is bundled with the annchor package for convenience.

Firstly, we import some useful modules and load the data:

import os
import time
import numpy as np

from annchor import Annchor, compare_neighbor_graphs
from annchor.datasets import load_strings

strings_data = load_strings()
X = strings_data['X']
y = strings_data['y']
neighbor_graph = strings_data['neighbor_graph']

nx = X.shape[0]

for x in X[::100]:
    print(x[:50]+'...')
cuiojvfnseoksugfcbwzrcoxtjxrvojrguqttjpeauenefmkmv...
uiofnsosungdgrxiiprvojrgujfdttjioqunknefamhlkyihvx...
cxumzfltweskptzwnlgojkdxidrebonxcmxvbgxayoachwfcsy...
cmjpuuozflodwqvkascdyeosakdupdoeovnbgxpajotahpwaqc...
vzdiefjmblnumdjeetvbvhwgyasygrzhuckvpclnmtviobpzvy...
nziejmbmknuxdhjbgeyvwgasygrhcpdxcgnmtviubjvyzjemll...
yhdpczcjxirmebhfdueskkjjtbclvncxjrstxhqvtoyamaiyyb...
yfhwczcxakdtenvbfctugnkkkjbcvxcxjwfrgcstahaxyiooeb...
yoftbrcmmpngdfzrbyltahrfbtyowpdjrnqlnxncutdovbgabo...
tyoqbywjhdwzoufzrqyltahrefbdzyunpdypdynrmchutdvsbl...
dopgwqjiehqqhmprvhqmnlbpuwszjkjjbshqofaqeoejtcegjt...
rahobdixljmjfysmegdwyzyezulajkzloaxqnipgxhhbyoztzn...
dfgxsltkbpxvgqptghjnkaoofbwqqdnqlbbzjsqubtfwovkbsk...
pjwamicvegedmfetridbijgafupsgieffcwnmgmptjwnmwegvn...
ovitcihpokhyldkuvgahnqnmixsakzbmsipqympnxtucivgqyi...
xvepnposhktvmutozuhkbqarqsbxjrhxuumofmtyaaeesbeuhf...

We see a data set consisting of long strings. A closer inspection may indicate some structure, but it is not obvious at this stage.

We use ANNchor to find the 25-nearest neighbour graph. Levenshtein distance is included in Annchor, and can be called by using the string 'levenshtein' (we could also define the levenshtein function beforehand and pass that to Annchor instead). We will specify that we want to do no more than 12% of the brute force work (since the data set is size 1600, brute force would be 1600x1599/2=1279200 calls to the metric, so we will make around ~153500 to the metric). To get accurate timing information, bear in mind that the first run will be slower than future runs due to the numba.jit compile time.

start_time = time.time()
ann = Annchor(X, 'levenshtein', n_neighbors=25, p_work=0.12)

ann.fit()
print('ANNchor Time: %5.3f seconds' % (time.time()-start_time))


# Test accuracy
error = compare_neighbor_graphs(neighbor_graph,
                                ann.neighbor_graph,
                                k)
print('ANNchor Accuracy: %d incorrect NN pairs (%5.3f%%)' % (error,100*error/(k*nx)))
ANNchor Time: 34.299 seconds
ANNchor Accuracy: 0 incorrect NN pairs (0.000%)

Not bad!

We can continue to use ANNchor in a typical EDA pipeline. Let's find the UMAP projection of our data set:

from umap import UMAP
from matplotlib import pyplot as plt

# Extract the distance matrix
D = ann.to_sparse_matrix()

U = UMAP(metric='precomputed',n_neighbors=k-1)
T = U.fit_transform(D)
# T now holds the 2d UMAP projection of our data

# View the 2D projection with matplotlib
fig,ax = plt.subplots(figsize=(7,7))
ax.scatter(*T.T,alpha=0.1)
plt.show()

Finally the structure of the data set is clear to us! There are 8 clusters of two distinct varieties: filaments and clouds.

More examples can be found in the Examples subfolder. Extra python packages will be required to run the examples. These packages can be installed via:

pip install -r annchor/Examples/requirements.txt
Owner
GCHQ
GCHQ
Dive into Machine Learning

Dive into Machine Learning Hi there! You might find this guide helpful if: You know Python or you're learning it 🐍 You're new to Machine Learning You

Michael Floering 11.1k Jan 03, 2023
cleanlab is the data-centric ML ops package for machine learning with noisy labels.

cleanlab is the data-centric ML ops package for machine learning with noisy labels. cleanlab cleans labels and supports finding, quantifying, and lear

Cleanlab 51 Nov 28, 2022
Decision tree is the most powerful and popular tool for classification and prediction

Diabetes Prediction Using Decision Tree Introduction Decision tree is the most powerful and popular tool for classification and prediction. A Decision

Arjun U 1 Jan 23, 2022
pandas, scikit-learn, xgboost and seaborn integration

pandas, scikit-learn and xgboost integration.

299 Dec 30, 2022
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co

Hugging Face 2.5k Jan 07, 2023
Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.

Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression

Keivan Ipchi Hagh 1 Nov 22, 2021
This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev

MLProject_01 This project impelemented for midterm of the Machine Learning #Zoomcamp #Alexey Grigorev Context Dataset English question data set file F

Hadi Nakhi 1 Dec 18, 2021
A Python library for detecting patterns and anomalies in massive datasets using the Matrix Profile

matrixprofile-ts matrixprofile-ts is a Python 2 and 3 library for evaluating time series data using the Matrix Profile algorithms developed by the Keo

Target 696 Dec 26, 2022
Estudos e projetos feitos com PySpark.

PySpark (Spark com Python) PySpark é uma biblioteca Spark escrita em Python, e seu objetivo é permitir a análise interativa dos dados em um ambiente d

Karinne Cristina 54 Nov 06, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Jan 06, 2023
Basic Docker Compose for Machine Learning Purposes

Docker-compose for Machine Learning How to use: cd docker-ml-jupyterlab

Chris Chen 1 Oct 29, 2021
BASTA: The BAyesian STellar Algorithm

BASTA: BAyesian STellar Algorithm Current stable version: v1.0 Important note: BASTA is developed for Python 3.8, but Python 3.7 should work as well.

BASTA team 16 Nov 15, 2022
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022
Uses WiFi signals :signal_strength: and machine learning to predict where you are

Uses WiFi signals and machine learning (sklearn's RandomForest) to predict where you are. Even works for small distances like 2-10 meters.

Pascal van Kooten 5k Jan 09, 2023
A demo project to elaborate how Machine Learn Models are deployed on production using Flask API

This is a salary prediction website developed with the help of machine learning, this makes prediction of salary on basis of few parameters like interview score, experience test score.

1 Feb 10, 2022
Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

Causal Inference and Machine Learning in Practice with EconML and CausalML: Industrial Use Cases at Microsoft, TripAdvisor, Uber

EconML/CausalML KDD 2021 Tutorial 124 Dec 28, 2022
Drug prediction

I have collected data about a set of patients, all of whom suffered from the same illness. During their course of treatment, each patient responded to one of 5 medications, Drug A, Drug B, Drug c, Dr

Khazar 1 Jan 28, 2022
A classification model capable of accurately predicting the price of secondhand cars

The purpose of this project is create a classification model capable of accurately predicting the price of secondhand cars. The data used for model building is open source and has been added to this

Akarsh Singh 2 Sep 13, 2022
Kaggle Competition using 15 numerical predictors to predict a continuous outcome.

Kaggle-Comp.-Data-Mining Kaggle Competition using 15 numerical predictors to predict a continuous outcome as part of a final project for a stats data

moisey alaev 1 Dec 28, 2021