SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

Overview

CORNELLSASLAB

SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

Instructions:

This python code can be used to convert SAS outputs from the lang and ac lab into data tables for regression and factorial summaries. SAS formst varies by run, therefore you may have to do a little editing before the code works.

For example, a working data chunk for this program would look something like this:

                  Differences of CHILDAGE*TASK*TR Least Squares Means

                                                     Standard
CHILDAGE  TASK  TR  _CHILDAGE  _TASK  _TR  Estimate     Error     DF  t Value  Pr > |t|

1         2     1   8          1      1     -0.4167    0.1251   1544    -3.33    0.0009
1         2     1   8          1      2     -0.2917    0.1251   1544    -2.33    0.0199
1         2     2   7          2      3     -0.4375    0.1363   1544    -3.21    0.0014
1         2     2   8          1      1     -0.4583    0.1251   1544    -3.66    0.0003

The SAS System 15:01 Sunday, August 4, 2019 139

                                 The GLIMMIX Procedure

                  Differences of CHILDAGE*TASK*TR Least Squares Means

                                                     Standard
CHILDAGE  TASK  TR  _CHILDAGE  _TASK  _TR  Estimate     Error     DF  t Value  Pr > |t|

1         2     2   8          1      2     -0.3333    0.1251   1544    -2.66    0.0078
1         2     2   8          1      3     -0.5625    0.1251   1544    -4.50    <.0001
1         2     2   8          2      1     -0.5833    0.1363   1544    -4.28    <.0001
1         2     3   7          2      3     -0.4167    0.1363   1544    -3.06    0.0023
1         2     3   8          1      1     -0.4375    0.1251   1544    -3.50    0.0005
1         2     3   8          1      2     -0.3125    0.1251   1544    -2.50    0.0126
1         2     3   8          1      3     -0.5417    0.1251   1544    -4.33    <.0001

The SAS System 15:01 Sunday, August 4, 2019 140

                                 The GLIMMIX Procedure

                  Differences of CHILDAGE*TASK*TR Least Squares Means

                                                     Standard
CHILDAGE  TASK  TR  _CHILDAGE  _TASK  _TR  Estimate     Error     DF  t Value  Pr > |t|

1         2     3   8          2      1     -0.5625    0.1363   1544    -4.13    <.0001
1         2     3   8          2      2     -0.5208    0.1363   1544    -3.82    0.0001
1         2     3   8          2      3     -0.4583    0.1363   1544    -3.36    0.0008
2         1     1   2          1      2    6.66E-16   0.07654   1544     0.00    1.0000
2         1     1   2          1      3    -0.08333   0.07654   1544    -1.09    0.2764
2         1     1   8          2      1     -0.4583    0.1251   1544    -3.66    0.0003
2         1     1   8          2      2     -0.4167    0.1251   1544    -3.33    0.0009
2         1     1   8          2      3     -0.3542    0.1251   1544    -2.83    0.0047

The SAS System 15:01 Sunday, August 4, 2019 141

As you can see, every chunk starts with the same title, and ends with a date and page number in the bottom right corner. All of the chunks have the same format and same number of columns. If the format of the pasted chunks is wrong, the code likely won't work.

NOTE: when pasting the file path to your excel document, make sure excel is not running on your computer, or else there will be an error.

Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
Pyramid Scene Parsing Network, CVPR2017.

Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This

Hengshuang Zhao 1.5k Jan 05, 2023
Python3 / PyTorch implementation of the following paper: Fine-grained Semantics-aware Representation Enhancement for Self-supervisedMonocular Depth Estimation. ICCV 2021 (oral)

FSRE-Depth This is a Python3 / PyTorch implementation of FSRE-Depth, as described in the following paper: Fine-grained Semantics-aware Representation

77 Dec 28, 2022
Official repository for the paper, MidiBERT-Piano: Large-scale Pre-training for Symbolic Music Understanding.

MidiBERT-Piano Authors: Yi-Hui (Sophia) Chou, I-Chun (Bronwin) Chen Introduction This is the official repository for the paper, MidiBERT-Piano: Large-

137 Dec 15, 2022
A Peer-to-peer Platform for Secure, Privacy-preserving, Decentralized Data Science

PyGrid is a peer-to-peer network of data owners and data scientists who can collectively train AI models using PySyft. PyGrid is also the central serv

OpenMined 615 Jan 03, 2023
This repository contains the PyTorch implementation of the paper STaCK: Sentence Ordering with Temporal Commonsense Knowledge appearing at EMNLP 2021.

STaCK: Sentence Ordering with Temporal Commonsense Knowledge This repository contains the pytorch implementation of the paper STaCK: Sentence Ordering

Deep Cognition and Language Research (DeCLaRe) Lab 23 Dec 16, 2022
Multiple Object Extraction from Aerial Imagery with Convolutional Neural Networks

This is an implementation of Volodymyr Mnih's dissertation methods on his Massachusetts road & building dataset and my original methods that are publi

Shunta Saito 255 Sep 07, 2022
[WWW 2022] Zero-Shot Stance Detection via Contrastive Learning

PT-HCL for Zero-Shot Stance Detection The code of this repository is constantly being updated... Please look forward to it! Introduction This reposito

Akuchi 12 Dec 21, 2022
Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation"

SharinGAN Official repo for the work titled "SharinGAN: Combining Synthetic and Real Data for Unsupervised GeometryEstimation" The official project we

Koutilya PNVR 23 Oct 19, 2022
Official implementation of "A Unified Objective for Novel Class Discovery", ICCV2021 (Oral)

A Unified Objective for Novel Class Discovery This is the official repository for the paper: A Unified Objective for Novel Class Discovery Enrico Fini

Enrico Fini 118 Dec 26, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
Learning Neural Painters Fast! using PyTorch and Fast.ai

The Joy of Neural Painting Learning Neural Painters Fast! using PyTorch and Fast.ai Blogpost with more details: The Joy of Neural Painting The impleme

Libre AI 72 Nov 10, 2022
[IROS'21] SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning

SurRoL IROS 2021 SurRoL: An Open-source Reinforcement Learning Centered and dVRK Compatible Platform for Surgical Robot Learning Features dVRK compati

<a href=[email protected]"> 55 Jan 03, 2023
[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

VITA 71 Dec 28, 2022
MultiTaskLearning - Multi Task Learning for 3D segmentation

Multi Task Learning for 3D segmentation Perception stack of an Autonomous Drivin

2 Sep 22, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022