IEEE Winter Conference on Applications of Computer Vision 2022 Accepted

Overview

SSKT(Accepted WACV2022)

Concept map

concept

Dataset

  • Image dataset
    • CIFAR10 (torchvision)
    • CIFAR100 (torchvision)
    • STL10 (torchvision)
    • Pascal VOC (torchvision)
    • ImageNet(I) (torchvision)
    • Places365(P)
  • Video dataset

Pre-trained models

  • Imagenet
    • we used the pre-trained model in torchvision.
    • using resnet18, 50
  • Places365

Option

  • isSource
    • Single Source Transfer Module
    • Transfer Module X, Only using auxiliary layer
  • transfer_module
    • Single Source Transfer Module
  • multi_source
    • multiple task transfer learning

Training

  • 2D PreLeKT
 python main.py --model resnet20  --source_arch resnet50 --sourceKind places365 --result /raid/video_data/output/PreLeKT --dataset stl10 --lr 0.1 --wd 5e-4 --epochs 200 --classifier_loss_method ce --auxiliary_loss_method kd --isSource --multi_source --transfer_module
  • 3D PreLeKT
 python main.py --root_path /raid/video_data/ucf101/ --video_path frames --annotation_path ucf101_01.json  --result_path /raid/video_data/output/PreLeKT --n_classes 400 --n_finetune_classes 101 --model resnet --model_depth 18 --resnet_shortcut A --batch_size 128 --n_threads 4 --pretrain_path /nvadmin/Pretrained_model/resnet-18-kinetics.pth --ft_begin_index 4 --dataset ucf101 --isSource --transfer_module --multi_source

Experiment

Comparison with other knowledge transfer methods.

  • For a further analysis of SSKT, we compared its performance with those of typical knowledge transfer methods, namely KD[1] and DML[3]
  • For KD, the details for learning were set the same as in [1], and for DML, training was performed in the same way as in [3].
  • In the case of 3D-CNN-based action classification[2], both learning from scratch and fine tuning results were included
Tt Model KD DML SSKT(Ts)
CIFAR10 ResNet20 91.75±0.24 92.37±0.15 92.46±0.15 (P+I)
CIFAR10 ResNet32 92.61±0.31 93.26±0.21 93.38±0.02 (P+I)
CIFAR100 ResNet20 68.66±0.24 69.48±0.05 68.63±0.12 (I)
CIFAR100 ResNet32 70.5±0.05 71.9±0.03 70.94±0.36 (P+I)
STL10 ResNet20 77.67±1.41 78.23±1.23 84.56±0.35 (P+I)
STL10 ResNet32 76.07±0.67 77.14±1.64 83.68±0.28 (I)
VOC ResNet18 64.11±0.18 39.89±0.07 76.42±0.06 (P+I)
VOC ResNet34 64.57±0.12 39.97±0.16 77.02±0.02 (P+I)
VOC ResNet50 62.39±0.6 39.65±0.03 77.1±0.14 (P+I)
UCF101 3D ResNet18(scratch) - 13.8 52.19(P+I)
UCF101 3D ResNet18(fine-tuning) - 83.95 84.58 (P)
HMDB51 3D ResNet18(scratch) - 3.01 17.91 (P+I)
HMDB51 3D ResNet18(fine-tuning) - 56.44 57.82 (P)

The performance comparison with MAXL[4], another auxiliary learning-based transfer learning method

  • The difference between the learning scheduler in MAXL and in our experiment is whether cosine annealing scheduler and focal loss are used or not.
  • In VGG16, SSKT showed better performance in all settings. In ResNet20, we also showed better performance in our settings than MAXL in all settings.
Tt Model MAXL (ψ[i]) SSKT (Ts, Loss ) Ts Model
CIFAR10 VGG16 93.49±0.05 (5) 94.1±0.1 (I, F) VGG16
CIFAR10 VGG16 - 94.22±0.02 (I, CE) VGG16
CIFAR10 ResNet20 91.56±0.16 (10) 91.48±0.03 (I, F) VGG16
CIFAR10 ResNet20 - 92.46±0.15 (P+I, CE) ResNet50, ResNet50

Citation

If you use SSKD in your research, please consider citing:

@InProceedings{SSKD_2022_WACV,
author = {Seungbum Hong, Jihun Yoon, and Min-Kook Choi},
title = {Self-Supervised Knowledge Transfer via Loosely Supervised Auxiliary Tasks},
booktitle = {In The IEEE Winter Conference on Applications of Computer Vision (WACV)},
month = {January},
year = {2022}
}

References

This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Learning to Stylize Novel Views

Learning to Stylize Novel Views [Project] [Paper] Contact: Hsin-Ping Huang ([ema

34 Nov 27, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Code for 2021 NeurIPS --- Towards Multi-Grained Explainability for Graph Neural Networks

ReFine: Multi-Grained Explainability for GNNs This is the official code for Towards Multi-Grained Explainability for Graph Neural Networks (NeurIPS 20

Shirley (Ying-Xin) Wu 47 Dec 16, 2022
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
A collection of loss functions for medical image segmentation

A collection of loss functions for medical image segmentation

Jun 3.1k Jan 03, 2023
PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS.

PyTorch Live is an easy to use library of tools for creating on-device ML demos on Android and iOS. With Live, you can build a working mobile app ML demo in minutes.

559 Jan 01, 2023
SafePicking: Learning Safe Object Extraction via Object-Level Mapping, ICRA 2022

SafePicking Learning Safe Object Extraction via Object-Level Mapping Kentaro Wad

Kentaro Wada 49 Oct 24, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

VAENAR-TTS - PyTorch Implementation PyTorch Implementation of VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis.

Keon Lee 67 Nov 14, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem

Benchmarking nearest neighbors Doing fast searching of nearest neighbors in high dimensional spaces is an increasingly important problem, but so far t

Erik Bernhardsson 3.2k Jan 03, 2023
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN

Segmentation and Identification of Vertebrae in CT Scans using CNN, k-means Clustering and k-NN If you use this code for your research, please cite ou

41 Dec 08, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
Extension to fastai for volumetric medical data

FAIMED 3D use fastai to quickly train fully three-dimensional models on radiological data Classification from faimed3d.all import * Load data in vari

Keno 26 Aug 22, 2022
My published benchmark for a Kaggle Simulations Competition

Lux AI Working Title Bot Please refer to the Kaggle notebook for the comment section. The comment section contains my explanation on my code structure

Tong Hui Kang 29 Aug 22, 2022
Code for our paper "Graph Pre-training for AMR Parsing and Generation" in ACL2022

AMRBART An implementation for ACL2022 paper "Graph Pre-training for AMR Parsing and Generation". You may find our paper here (Arxiv). Requirements pyt

xfbai 60 Jan 03, 2023