Hierarchical Few-Shot Generative Models

Overview

Hierarchical Few-Shot Generative Models

Giorgio Giannone, Ole Winther

This repo contains code and experiments for the paper Hierarchical Few-Shot Generative Models.


Settings

Clone the repo:

git clone https://github.com/georgosgeorgos/hierarchical-few-shot-generative-models
cd hierarchical-few-shot-generative-models

Create and activate the conda env:

conda env create -f environment.yml
conda activate hfsgm

The code has been tested on Ubuntu 18.04, Python 3.6 and CUDA 11.3

We use wandb for visualization. The first time you run the code you will need to login.

Data

We provide preprocessed Omniglot dataset.

From the main folder, copy the data in data/omniglot_ns/:

wget https://github.com/georgosgeorgos/hierarchical-few-shot-generative-models/releases/download/Omniglot/omni_train_val_test.pkl

For CelebA you need to download the dataset from here.

Dataset

In dataset we provide utilities to process and augment datasets in the few-shot setting. Each dataset is a large collection of small sets. Sets can be created dynamically. The dataset/base.py file collects basic info about the datasets. For binary datasets (omniglot_ns.py) we augment using flipping and rotations. For RGB datasets (celeba.py) we use only flipping.

Experiment

In experiment we implement scripts for model evaluation, experiments and visualizations.

  • attention.py - visualize attention weights and heads for models with learnable aggregations (LAG).
  • cardinality.py - compute ELBOs for different input set size: [1, 2, 5, 10, 20].
  • classifier_mnist.py - few-shot classifiers on MNIST.
  • kl_layer.py - compute KL over z and c for each layer in latent space.
  • marginal.py - compute approximate log-marginal likelihood with 1K importance samples.
  • refine_vis.py - visualize refined samples.
  • sampling_rgb.py - reconstruction, conditional, refined, unconditional sampling for RGB datasets.
  • sampling_transfer.py - reconstruction, conditional, refined, unconditional sampling on transfer datasets.
  • sampling.py - reconstruction, conditional, refined, unconditional sampling for binary datasets.
  • transfer.py - compute ELBOs on MNIST, DoubleMNIST, TripleMNIST.

Model

In model we implement baselines and model variants.

  • base.py - base class for all the models.
  • vae.py - Variational Autoencoder (VAE).
  • ns.py - Neural Statistician (NS).
  • tns.py - NS with learnable aggregation (NS-LAG).
  • cns.py - NS with convolutional latent space (CNS).
  • ctns.py - CNS with learnable aggregation (CNS-LAG).
  • hfsgm.py - Hierarchical Few-Shot Generative Model (HFSGM).
  • thfsgm.py - HFSGM with learnable aggregation (HFSGM-LAG).
  • chfsgm.py - HFSGM with convolutional latent space (CHFSGM).
  • cthfsgm.py - CHFSGM with learnable aggregation (CHFSGM-LAG).

Script

Scripts used for training the models in the paper.

To run a CNS on Omniglot:

sh script/main_cns.sh GPU_NUMBER omniglot_ns

Train a model

To train a generic model run:

python main.py --name {VAE, NS, CNS, CTNS, CHFSGM, CTHFSGM} \
               --model {vae, ns, cns, ctns, chfsgm, cthfsgm} \
               --augment \
               --dataset omniglot_ns \
               --likelihood binary \
               --hidden-dim 128 \
               --c-dim 32 \
               --z-dim 32 \
               --output-dir /output \
               --alpha-step 0.98 \
               --alpha 2 \
               --adjust-lr \
               --scheduler plateau \
               --sample-size {2, 5, 10} \
               --sample-size-test {2, 5, 10} \
               --num-classes 1 \
               --learning-rate 1e-4 \
               --epochs 400 \
               --batch-size 100 \
               --tag (optional string)

If you do not want to save logs, use the flag --dry_run. This flag will call utils/trainer_dry.py instead of trainer.py.


Acknowledgments

A lot of code and ideas borrowed from:

You might also like...
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021
Official PyTorch Implementation of Hypercorrelation Squeeze for Few-Shot Segmentation, arXiv 2021

Hypercorrelation Squeeze for Few-Shot Segmentation This is the implementation of the paper "Hypercorrelation Squeeze for Few-Shot Segmentation" by Juh

Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch
Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch

Cross Transformers - Pytorch (wip) Implementation of Cross Transformer for spatially-aware few-shot transfer, in Pytorch Install $ pip install cross-t

Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)
Official repository for Few-shot Image Generation via Cross-domain Correspondence (CVPR '21)

Few-shot Image Generation via Cross-domain Correspondence Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A. Efros, Yong Jae Lee, Eli Shechtman, Richard Zh

[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation
[CVPR 2021] Few-shot 3D Point Cloud Semantic Segmentation

Few-shot 3D Point Cloud Semantic Segmentation Created by Na Zhao from National University of Singapore Introduction This repository contains the PyTor

Few-Shot Graph Learning for Molecular Property Prediction

Few-shot Graph Learning for Molecular Property Prediction Introduction This is the source code and dataset for the following paper: Few-shot Graph Lea

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

The implementation of PEMP in paper
The implementation of PEMP in paper "Prior-Enhanced Few-Shot Segmentation with Meta-Prototypes"

Prior-Enhanced network with Meta-Prototypes (PEMP) This is the PyTorch implementation of PEMP. Overview of PEMP Meta-Prototypes & Adaptive Prototypes

Code and data of the ACL 2021 paper: Few-Shot Text Ranking with Meta Adapted Synthetic Weak Supervision

MetaAdaptRank This repository provides the implementation of meta-learning to reweight synthetic weak supervision data described in the paper Few-Shot

Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)
Adaptive Prototype Learning and Allocation for Few-Shot Segmentation (CVPR 2021)

ASGNet The code is for the paper "Adaptive Prototype Learning and Allocation for Few-Shot Segmentation" (accepted to CVPR 2021) [arxiv] Overview data/

Releases(Omniglot)
Owner
Giorgio Giannone
Science is built up with data, as a house is with stones. But a collection of data is no more a science than a heap of stones is a house. (J.H. Poincaré)
Giorgio Giannone
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomaly Detection

Why, hello there! This is the supporting notebook for the research paper — Why Are You Weird? Infusing Interpretability in Isolation Forest for Anomal

2 Dec 14, 2021
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication"

NFFT4ANOVA Source code for our Paper "Learning in High-Dimensional Feature Spaces Using ANOVA-Based Matrix-Vector Multiplication" This package uses th

Theresa Wagner 1 Aug 10, 2022
NCVX (NonConVeX): A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning.

The source code is temporariy removed, as we are solving potential copyright and license issues with GRANSO (http://www.timmitchell.com/software/GRANS

SUN Group @ UMN 28 Aug 03, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas Fürst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
A Python package for time series augmentation

tsaug tsaug is a Python package for time series augmentation. It offers a set of augmentation methods for time series, as well as a simple API to conn

Arundo Analytics 278 Jan 01, 2023
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 18, 2021
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment

DEEPAGÉ: Answering Questions in Portuguese about the Brazilian Environment This repository is related to the paper DEEPAGÉ: Answering Questions in Por

0 Dec 10, 2021
Irrigation controller for Home Assistant

Irrigation Unlimited This integration is for irrigation systems large and small. It can offer some complex arrangements without large and messy script

Robert Cook 176 Jan 02, 2023
This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in Eurographics 2021

Deep-Detail-Enhancement-for-Any-Garment Introduction This repository contains the implementation of Deep Detail Enhancment for Any Garment proposed in

40 Dec 13, 2022
Remote sensing change detection tool based on PaddlePaddle

PdRSCD PdRSCD(PaddlePaddle Remote Sensing Change Detection)是一个基于飞桨PaddlePaddle的遥感变化检测的项目,pypi包名为ppcd。目前0.2版本,最新支持图像列表输入的训练和预测,如多期影像、多源影像甚至多期多源影像。可以快速完

38 Aug 31, 2022
Code for the CIKM 2019 paper "DSANet: Dual Self-Attention Network for Multivariate Time Series Forecasting".

Dual Self-Attention Network for Multivariate Time Series Forecasting 20.10.26 Update: Due to the difficulty of installation and code maintenance cause

Kyon Huang 223 Dec 16, 2022
GT4SD, an open-source library to accelerate hypothesis generation in the scientific discovery process.

The GT4SD (Generative Toolkit for Scientific Discovery) is an open-source platform to accelerate hypothesis generation in the scientific discovery process. It provides a library for making state-of-t

Generative Toolkit 4 Scientific Discovery 142 Dec 24, 2022
Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker

Deploying PyTorch Model to Production with FastAPI in CUDA-supported Docker A example FastAPI PyTorch Model deploy with nvidia/cuda base docker. Model

Ming 68 Jan 04, 2023