Official PyTorch Implementation of Learning Architectures for Binary Networks

Related tags

Deep Learningbnas
Overview

Learning Architectures for Binary Networks

An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020)
If you find any part of our code useful for your research, consider citing our paper.

@inproceedings{kimSC2020BNAS,
  title={Learning Architectures for Binary Networks},
  author={Dahyun Kim and Kunal Pratap Singh and Jonghyun Choi},
  booktitle={ECCV},
  year={2020}
}

Maintainer

Introduction

We present a method for searching architectures of a network with both binary weights and activations. When using the same binarization scheme, our searched architectures outperform binary network whose architectures are well known floating point networks.

Note: our searched architectures still achieve competitive results when compared to the state of the art without additional pretraining, new binarization schemes, or novel training methods.

Prerequisite - Docker Containers

We recommend using the below Docker container as it provides comprehensive running environment. You will need to install nvidia-docker and its related packages following instructions here.

Pull our image uploaded here using the following command.

$ docker pull killawhale/apex:latest

You can then create the container to run our code via the following command.

$ docker run --name [CONTAINER_NAME] --runtime=nvidia -it -v [HOST_FILE_DIR]:[CONTAINER_FILE_DIR] --shm-size 16g killawhale/apex:latest bash
  • [CONTAINER_NAME]: the name of the created container
  • [HOST_FILE_DIR]: the path of the directory on the host machine which you want to sync your container with
  • [CONTAINER_FILE_DIR]: the name in which the synced directory will appear inside the container

Note: For those who do not want to use the docker container, we use PyTorch 1.2, torchvision 0.5, Python 3.6, CUDA 10.0, and Apex 0.1. You can also refer to the provided requirements.txt.

Dataset Preparation

CIFAR10

For CIFAR10, we're using CIFAR10 provided by torchvision. Run the following command to download it.

$ python src/download_cifar10.py

This will create a directory named data and download the dataset in it.

ImageNet

For ImageNet, please follow the instructions below.

  1. download the training set for the ImageNet dataset.
$ wget http://www.image-net.org/challenges/LSVRC/2012/nnoupb/ILSVRC2012_img_train.tar

This may take a long time depending on your internet connection.

  1. download the validation set for the ImageNet dataset.
$ wget http://www.image-net.org/challenges/LSVRC/2012/nnoupb/ILSVRC2012_img_val.tar
  1. make a directory which will contain the ImageNet dataset and move your downloaded .tar files inside the directory.

  2. extract and organize the training set into different categories.

$ mkdir train && mv ILSVRC2012_img_train.tar train/ && cd train
$ tar -xvf ILSVRC2012_img_train.tar && rm -f ILSVRC2012_img_train.tar
$ find . -name "*.tar" | while read NAME ; do mkdir -p "${NAME%.tar}"; tar -xvf "${NAME}" -C "${NAME%.tar}"; rm -f "${NAME}"; done
$ cd ..
  1. do the same for the validation set as well.
$ mkdir val && mv ILSVRC2012_img_val.tar val/ && cd val && tar -xvf ILSVRC2012_img_val.tar
$ wget -qO- https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh | bash
$ rm -rf ILSVR2012_img_val.tar
  1. change the synset ids to integer labels.
$ python src/prepare_imgnet.py [PATH_TO_IMAGENET]
  • [PATH_TO_IMAGENET]: the path to the directory which has the ImageNet dataset

You can optionally run the following if you only prepared the validation set.

$ python src/prepare_imgnet.py [PATH_TO_IMAGENET] --val_only

Inference with Pre-Trained Models

To reproduce the results reported in the paper, you can use the pretrained models provided here.

Note: For CIFAR10 we only share BNAS-A, as training other configurations for CIFAR10 does not take much time. For ImageNet, we currently provide all the models (BNAS-D,E,F,G,H).

For running validation on CIFAR10 using our pretrained models, use the following command.

$ CUDA_VISIBLE_DEVICES=0,1; python -W ignore src/test.py --path_to_weights [PATH_TO_WEIGHTS] --arch latest_cell_zeroise --parallel
  • [PATH_TO_WEIGHTS]: the path to the downloaded pretrained weights (for CIFAR10, it's BNAS-A)

For running validation on ImageNet using our pretrained models, use the following command.

$ CUDA_VISIBLE_DEIVCES=0,1; python -m torch.distributed.launch --nproc_per_node=2 src/test_imagenet.py --data [PATH_TO_IMAGENET] --path_to_weights [PATH_TO_WEIGHTS] --model_config [MODEL_CONFIG]
  • [PATH_TO_IMAGENET]: the path to the directory which has the ImageNet dataset
  • [PATH_TO_WEIGHTS]: the path to the downloaded pretrained weights
  • [MODEL_CONFIG]: the model to run the validation with. Can be one of 'bnas-d', 'bnas-e', 'bnas-f', 'bnas-g', or 'bnas-h'

Expected result:

Model Reported Top-1(%) Reported Top-5(%) Reproduced Top-1(%) Reproduced Top-1(%)
BNAS-A 92.70 - ~92.39 -
BNAS-D 57.69 79.89 ~57.60 ~80.00
BNAS-E 58.76 80.61 ~58.15 ~80.16
BNAS-F 58.99 80.85 ~58.89 ~80.87
BNAS-G 59.81 81.61 ~59.39 ~81.03
BNAS-H 63.51 83.91 ~63.70 ~84.49

You can click on the links at the model name to download the corresponding model weights.

Note: the provided pretrained weights were trained with Apex along with different batch size than the ones reported in the paper (due to computation resource constraints) and hence the inference result may vary slightly from the reported results in the paper.

More comparison with state of the art binary networks are in the paper.

Searching Architectures

To search architectures, use the following command.

$ CUDA_VISIBLE_DEVICES=0; python -W ignore src/search.py --save [ARCH_NAME]
  • [ARCH_NAME]: the name of the searched architecture

This will automatically append the searched architecture in the genotypes.py file. Note that two genotypes will be appended, one for CIFAR10 and one for ImageNet. The validation accuracy at the end of the search is not indicative of the final performance of the searched architecture. To obtain the final performance, one must train the final architecture from scratch as described next.

BNAS-Normal Cell BNAS-Reduction Cell

Figure: One Example of Normal(left) and Reduction(right) cells searched by BNAS

Training Searched Architectures from scratch

To train our best searched cell on CIFAR10, use the following command.

$ CUDA_VISIBLE_DEVICES=0,1 python -W ignore src/train.py --learning_rate 0.05 --save [SAVE_NAME] --arch latest_cell_zeroise --parallel 
  • [SAVE_NAME]: experiment name

You will be able to see the validation accuracy at every epoch as shown below and there is no need to run a separate inference code.

2019-12-29 11:47:42,166 args = Namespace(arch='latest_cell_zeroise', batch_size=256, data='../data', drop_path_prob=0.2, epochs=600, init_channels=36, layers=20, learning_rate=0.05, model_path='saved_models', momentum=0.9, num_skip=1, parallel=True, report_freq=50, save='eval-latest_cell_zeroise_train_repro_0.05', seed=0, weight_decay=3e-06)
2019-12-29 11:47:46,893 param size = 5.578252MB
2019-12-29 11:47:48,654 epoch 0 lr 2.500000e-03
2019-12-29 11:47:55,462 train 000 2.623852e+00 9.375000 57.812500
2019-12-29 11:48:34,952 train 050 2.103856e+00 22.533701 74.180453
2019-12-29 11:49:14,118 train 100 1.943232e+00 27.440439 80.186417
2019-12-29 11:49:53,748 train 150 1.867823e+00 30.114342 82.512417
2019-12-29 11:50:29,680 train_acc 32.170000
2019-12-29 11:50:30,057 valid 000 1.792161e+00 30.859375 88.671875
2019-12-29 11:50:34,032 valid_acc 38.350000
2019-12-29 11:50:34,101 epoch 1 lr 2.675926e-03
2019-12-29 11:50:35,476 train 000 1.551331e+00 40.234375 92.187500
2019-12-29 11:51:15,773 train 050 1.572010e+00 42.256434 90.502451
2019-12-29 11:51:55,991 train 100 1.539024e+00 43.181467 90.976949
2019-12-29 11:52:36,345 train 150 1.515295e+00 44.264797 91.395902
2019-12-29 11:53:12,128 train_acc 45.016000
2019-12-29 11:53:12,487 valid 000 1.419507e+00 46.484375 93.359375
2019-12-29 11:53:16,366 valid_acc 48.640000

You should expect around 92% validation accuracy with our best searched cell once the training is finished at 600 epochs. To train custom architectures, give custom architectures to the --arch flag after adding it in the genotypes.py file. Note that you can also change the number of cells stacked and number of initial channels of the model by giving arguments to the --layers option and --init_channels option respectively.

With different architectures, the final network will have different computational costs and the default hyperparameters may not be optimal (such as the learning rate scheduling). Thus, you should expect the final accuracy to vary by around 1~1.5% on the validation accuracy on CIFAR10.

To train our best searched cell on ImageNet, use the following command.

$ CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 src/train_imagenet.py --data [PATH_TO_IMAGENET] --arch latest_cell --model_config [MODEL_CONFIG] --save [SAVE_NAME]
  • [PATH_TO_IMAGENET]: the path to the directory which has the ImageNet dataset
  • [MODEL_CONFIG]: the model to train. Can be one of 'bnas-d', 'bnas-e', 'bnas-f', 'bnas-g', or 'bnas-h'
  • [SAVE_NAME]: experiment name

You will be able to see the validation accuracy at every epoch as shown below and there is no need to run a separate inference code.

2020-03-25 09:53:44,578 args = Namespace(arch='latest_cell', batch_size=256, class_size=1000, data='../../darts-norm/cnn/Imagenet/', distributed=True, drop_path_prob=0, epochs=250, gpu=0, grad_clip=5.0, init_channels=68, keep_batchnorm_fp32=None, label_smooth=0.1, layers=15, learning_rate=0.05, local_rank=0, loss_scale=None, momentum=0.9, num_skip=3, opt_level='O0', report_freq=100, resume=None, save='eval-bnas_f_retrain', seed=0, start_epoch=0, weight_decay=3e-05, world_size=4)
2020-03-25 09:53:50,926 no of parameters 39781442.000000
2020-03-25 09:53:56,444 epoch 0
2020-03-25 09:54:06,220 train 000 7.844889e+00 0.000000 0.097656
2020-03-25 10:00:01,717 train 100 7.059666e+00 0.315207 1.382658
2020-03-25 10:06:09,138 train 200 6.909059e+00 0.498484 2.070215
2020-03-25 10:12:21,804 train 300 6.750810e+00 0.838027 3.157119
2020-03-25 10:18:30,815 train 400 6.627304e+00 1.203534 4.369691
2020-03-25 10:24:37,901 train 500 6.526508e+00 1.601679 5.519625
2020-03-25 10:30:44,522 train 600 6.439230e+00 2.016983 6.666298
2020-03-25 10:36:50,776 train 700 6.360960e+00 2.424132 7.778648
2020-03-25 10:42:58,087 train 800 6.291507e+00 2.830446 8.824784
2020-03-25 10:49:04,204 train 900 6.228209e+00 3.251162 9.829681
2020-03-25 10:55:12,315 train 1000 6.167705e+00 3.673670 10.844819
2020-03-25 11:01:18,095 train 1100 6.112888e+00 4.080009 11.778710
2020-03-25 11:07:23,347 train 1200 6.060676e+00 4.500969 12.712388
2020-03-25 11:10:30,048 train_acc 4.697276
2020-03-25 11:10:33,504 valid 000 4.754593e+00 10.839844 27.832031
2020-03-25 11:11:03,920 valid_acc_top1 11.714000
2020-03-25 11:11:03,920 valid_acc_top5 28.784000

You should expect similar accuracy to our pretrained models once the training is finished at 250 epochs.

To train custom architectures, give custom architectures to the --arch flag after adding it in the genotypes.py file as. Note that you can also change the number of cells stacked and number of initial channels of the model by giving arguments to the --layers option and --init_channels option respectively.

With different architectures, the final network will have different computational costs and the default hyperparameters may not be optimal (such as the learning rate scheduling). Thus, you should expect the final accuracy to vary by around 0.2% on the validation accuracy on ImageNet.

Note: we ran our experiments with at least two NVIDIA V100s. For running on a single GPU, omit the --parallel flag and specify the GPU id using the CUDA_VISIBLE_DEVICES environment variable in the command line.

You might also like...
An experimental technique for efficiently exploring neural architectures.
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Code image classification of MNIST dataset using different architectures: simple linear NN, autoencoder, and highway network

Deep Learning for image classification pip install -r http://webia.lip6.fr/~baskiotisn/requirements-amal.txt Train an autoencoder python3 train_auto

Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

NFT-Price-Prediction-CNN - Using visual feature extraction, prices of NFTs are predicted via CNN (Alexnet and Resnet) architectures.

Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The original code is written in keras.

CasRel-pytorch-reimplement Pytorch reimplement of the paper "A Novel Cascade Binary Tagging Framework for Relational Triple Extraction" ACL2020. The o

Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks
Official PyTorch implementation of Joint Object Detection and Multi-Object Tracking with Graph Neural Networks

This is the official PyTorch implementation of our paper: "Joint Object Detection and Multi-Object Tracking with Graph Neural Networks". Our project website and video demos are here.

Official PyTorch implementation of Spatial Dependency Networks.
Official PyTorch implementation of Spatial Dependency Networks.

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling Đorđe Miladinović   Aleksandar Stanić   Stefan Bauer   Jürgen Schmid

The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Comments
  • TypeError:forward() missing 1 required positinal argument: 'x'

    TypeError:forward() missing 1 required positinal argument: 'x'

    Hi! Thanks for your excellent contribution to the community! I faces a problem when I tried to simply run your code (search or inference ). It raised " TypeError:forward() missing 1 required positinal argument: 'x' " . This problem probably is in model_search.py line 136 & line 124. Can you take a look at it ?

    opened by lawsonX 1
  • Something wrong about selecting which convs to be binaried

    Something wrong about selecting which convs to be binaried

    In bin_utils_search.py, line 24-30; there is something wrong about selecting which convolution kernels to be binaried. The right way is to choose the 8 * 14 * 4=448 convolutions to be binaried(8 is the number of cells, 14 is the number of lines in a cell, 4 is the options for different convolutions in one line). However, the code choose the top 448 convolutions to be binaried(including res, prepocess0, preprocess1). The cause is that n here has no effect to distinguish. I hope your reply!

    opened by DamonAtSjtu 1
  • Calculating FLOPs for a Binary/XNOR-Net

    Calculating FLOPs for a Binary/XNOR-Net

    Hello, Thanks for providing amazing support to the research community. Your code is very helpful. I was reading your paper and discovered that you have provided FLOPs required vs accuracy. However, when I was looking at your code, I struggled to find the place where the FLOPS were calculated. Would you be happy to share how you calculated the FLOPS count for the binary/xnor-net? Any help regarding this would be much appreciated.

    Kind Regards, Mohaimen

    opened by mohaimenz 0
Releases(v1.0)
  • v1.0(Aug 12, 2020)

    First release of the official PyTorch implementation of our paper Learning Architectures for Binary Networks (https://arxiv.org/abs/2002.06963)

    Source code(tar.gz)
    Source code(zip)
Owner
Computer Vision Lab. @ GIST
Some useful codes for computer vision and machine learning.
Computer Vision Lab. @ GIST
A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population

DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials

ZJUNLP 1.6k Jan 05, 2023
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery

i-SpaSP: Structured Neural Pruning via Sparse Signal Recovery This is a public code repository for the publication: i-SpaSP: Structured Neural Pruning

Cameron Ronald Wolfe 5 Nov 04, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
Language Models for the legal domain in Spanish done @ BSC-TEMU within the "Plan de las Tecnologías del Lenguaje" (Plan-TL).

Spanish legal domain Language Model ⚖️ This repository contains the page for two main resources for the Spanish legal domain: A RoBERTa model: https:/

Plan de Tecnologías del Lenguaje - Gobierno de España 12 Nov 14, 2022
C3D is a modified version of BVLC caffe to support 3D ConvNets.

C3D C3D is a modified version of BVLC caffe to support 3D convolution and pooling. The main supporting features include: Training or fine-tuning 3D Co

Meta Archive 1.1k Nov 14, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
Yolov5+SlowFast: Realtime Action Detection Based on PytorchVideo

Yolov5+SlowFast: Realtime Action Detection A realtime action detection frame work based on PytorchVideo. Here are some details about our modification:

WuFan 181 Dec 30, 2022
PantheonRL is a package for training and testing multi-agent reinforcement learning environments.

PantheonRL is a package for training and testing multi-agent reinforcement learning environments. PantheonRL supports cross-play, fine-tuning, ad-hoc coordination, and more.

Stanford Intelligent and Interactive Autonomous Systems Group 57 Dec 28, 2022
Bling's Object detection tool

BriVL for Building Applications This repo is used for illustrating how to build applications by using BriVL model. This repo is re-implemented from fo

chuhaojin 47 Nov 01, 2022
PyArmadillo: an alternative approach to linear algebra in Python

PyArmadillo is a linear algebra library for the Python language, with an emphasis on ease of use.

Terry Zhuo 58 Oct 11, 2022
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
Analysing poker data from home games with friends

Poker Game Analysis Analysing poker data from home games with friends. Not a lot of data is collected, so this project is primarily focussed on descri

Stavros Karmaniolos 1 Oct 15, 2022
Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" (NeurIPS'20)

IGNN Code repo for "Cross-Scale Internal Graph Neural Network for Image Super-Resolution" [paper] [supp] Prepare datasets 1 Download training dataset

Shangchen Zhou 278 Jan 03, 2023
Classify music genre from a 10 second sound stream using a Neural Network.

MusicGenreClassification Academic research in the field of Deep Learning (Deep Neural Networks) and Sound Processing, Tel Aviv University. Featured in

Matan Lachmish 453 Dec 27, 2022
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022
Implementation of the Swin Transformer in PyTorch.

Swin Transformer - PyTorch Implementation of the Swin Transformer architecture. This paper presents a new vision Transformer, called Swin Transformer,

597 Jan 03, 2023
Diverse Branch Block: Building a Convolution as an Inception-like Unit

Diverse Branch Block: Building a Convolution as an Inception-like Unit (PyTorch) (CVPR-2021) DBB is a powerful ConvNet building block to replace regul

253 Dec 24, 2022