SEJE Pytorch implementation

Related tags

Deep LearningSEJE
Overview

SEJE is a prototype for the paper Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering.

Contents

  1. Instroduction
  2. Installation
  3. Recipe1M Dataset
  4. Vision models
  5. Out-of-the-box training
  6. Training
  7. Testing
  8. Contact

Introduction

Overview: SEJE is a two-phase deep feature engineering framework for efficient learning of semantics enhanced joint embedding, which clearly separates the deep feature engineering in data preprocessing from training the text-image joint embedding model. We use the Recipe1M dataset for the technical description and empirical validation. In preprocessing, we perform deep feature engineering by combining deep feature engineering with semantic context features derived from raw text-image input data. We leverage LSTM to identify key terms, deep NLP models from the BERT family, TextRank, or TF-IDF to produce ranking scores for key terms before generating the vector representation for each key term by using word2vec. We leverage wideResNet50 and word2vec to extract and encode the image category semantics of food images to help semantic alignment of the learned recipe and image embeddings in the joint latent space. In joint embedding learning, we perform deep feature engineering by optimizing the batch-hard triplet loss function with soft-margin and double negative sampling, taking into account also the category-based alignment loss and discriminator-based alignment loss. Extensive experiments demonstrate that our SEJE approach with deep feature engineering significantly outperforms the state-of-the-art approaches.

SEJE Architecture

SEJE Phase I Architecture and Examples

SEJE Phase II Architecture

SEJE Joint Embedding Optimization with instance-class double hard sampling strategy

SEJE Joint Embedding Optimization with discriminator based alignment loss regularization

SEJE Experimental Evaluation Highlights

Installation

We use the environment with Python 3.7.6 and Pytorch 1.4.0. Run pip install --upgrade cython and then install the dependencies with pip install -r requirements.txt. Our work is an extension of im2recipe.

Recipe1M Dataset

The Recipe1M dataset is available for download here, where you can find some code used to construct the dataset and get the structured recipe text, food images, pre-trained instruction featuers and so on.

Vision models

This current version of the code uses a pre-trained ResNet-50.

Out-of-the-box training

To train the model, you will need to create following files:

  • data/train_lmdb: LMDB (training) containing skip-instructions vectors, ingredient ids and categories.
  • data/train_keys: pickle (training) file containing skip-instructions vectors, ingredient ids and categories.
  • data/val_lmdb: LMDB (validation) containing skip-instructions vectors, ingredient ids and categories.
  • data/val_keys: pickle (validation) file containing skip-instructions vectors, ingredient ids and categories.
  • data/test_lmdb: LMDB (testing) containing skip-instructions vectors, ingredient ids and categories.
  • data/test_keys: pickle (testing) file containing skip-instructions vectors, ingredient ids and categories.
  • data/text/vocab.txt: file containing all the vocabulary found within the recipes.

Recipe1M LMDBs and pickle files can be found in train.tar, val.tar and test.tar. here

It is worth mentioning that the code is expecting images to be located in a four-level folder structure, e.g. image named 0fa8309c13.jpg can be found in ./data/images/0/f/a/8/0fa8309c13.jpg. Each one of the Tar files contains the first folder level, 16 in total.

The pre-trained TFIDF vectors for each recipe, image category feature for each image and the optimized category label for each image-recipe pair can be found in id2tfidf_vec.pkl, id2img_101_cls_vec.pkl and id2class_1005.pkl respectively.

Word2Vec

Training word2vec with recipe data:

  • Download and compile word2vec
  • Train with:
./word2vec -hs 1 -negative 0 -window 10 -cbow 0 -iter 10 -size 300 -binary 1 -min-count 10 -threads 20 -train tokenized_text.txt -output vocab.bin

The pre-trained word2vec model can be found in vocab.bin.

Training

  • Train the model with:
CUDA_VISIBLE_DEVICES=0 python train.py 

We did the experiments with batch size 100, which takes about 11 GB memory.

Testing

  • Test the trained model with
CUDA_VISIBLE_DEVICES=0 python test.py
  • The results will be saved in results, which include the MedR result and recall scores for the recipe-to-image retrieval and image-to-recipe retrieval.
  • Our best model trained with Recipe1M (TSC paper) can be downloaded here.

Contact

We are continuing the development and there is ongoing work in our lab regarding cross-modal retrieval between cooking recipes and food images. For any questions or suggestions you can use the issues section or reach us at [email protected].

Lead Developer: Zhongwei Xie, Georgia Institute of Technology

Advisor: Prof. Dr. Ling Liu, Georgia Institute of Technology

If you use our code, please cite

[1] Zhongwei Xie, Ling Liu, Yanzhao Wu, et al. Learning Text-Image Joint Embedding for Efficient Cross-Modal Retrieval with Deep Feature Engineering[J]//ACM Transactions on Information Systems (TOIS).

[2] Zhongwei Xie, Ling Liu, Lin Li, et al. Efficient Deep Feature Calibration for Cross-Modal Joint Embedding Learning[C]//Proceedings of the 2021 International Conference on Multimodal Interaction. 2021: 43-51.

Code for the tech report Toward Training at ImageNet Scale with Differential Privacy

Differentially private Imagenet training Code for the tech report Toward Training at ImageNet Scale with Differential Privacy by Alexey Kurakin, Steve

Google Research 29 Nov 03, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
Create Own QR code with Python

Create-Own-QR-code Create Own QR code with Python SO guys in here, you have to install pyqrcode 2. open CMD and type python -m pip install pyqrcode

JehanKandy 10 Jul 13, 2022
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
[ICCV 2021] Released code for Causal Attention for Unbiased Visual Recognition

CaaM This repo contains the codes of training our CaaM on NICO/ImageNet9 dataset. Due to my recent limited bandwidth, this codebase is still messy, wh

Wang Tan 66 Dec 31, 2022
Implementation of average- and worst-case robust flatness measures for adversarial training.

Relating Adversarially Robust Generalization to Flat Minima This repository contains code corresponding to the MLSys'21 paper: D. Stutz, M. Hein, B. S

David Stutz 13 Nov 27, 2022
Implementation of algorithms for continuous control (DDPG and NAF).

DEPRECATION This repository is deprecated and is no longer maintaned. Please see a more recent implementation of RL for continuous control at jax-sac.

Ilya Kostrikov 288 Dec 31, 2022
Neural Dynamic Policies for End-to-End Sensorimotor Learning

This is a PyTorch based implementation for our NeurIPS 2020 paper on Neural Dynamic Policies for end-to-end sensorimotor learning.

Shikhar Bahl 47 Dec 11, 2022
Development Kit for the SoccerNet Challenge

SoccerNetv2-DevKit Welcome to the SoccerNet-V2 Development Kit for the SoccerNet Benchmark and Challenge. This kit is meant as a help to get started w

Silvio Giancola 117 Dec 30, 2022
Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Source Code

Learning from Guided Play: A Scheduled Hierarchical Approach for Improving Exploration in Adversarial Imitation Learning Trevor Ablett*, Bryan Chan*,

STARS Laboratory 8 Sep 14, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech

PortaSpeech - PyTorch Implementation PyTorch Implementation of PortaSpeech: Portable and High-Quality Generative Text-to-Speech. Model Size Module Nor

Keon Lee 279 Jan 04, 2023
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
LSTM built using Keras Python package to predict time series steps and sequences. Includes sin wave and stock market data

LSTM Neural Network for Time Series Prediction LSTM built using the Keras Python package to predict time series steps and sequences. Includes sine wav

Jakob Aungiers 4.1k Jan 02, 2023
Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized

VQGAN-CLIP-Docker About Zero-Shot Text-to-Image Generation VQGAN+CLIP Dockerized This is a stripped and minimal dependency repository for running loca

Kevin Costa 73 Sep 11, 2022
CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Selection

CIFS This repository provides codes for CIFS (ICML 2021). CIFS: Improving Adversarial Robustness of CNNs via Channel-wise Importance-based Feature Sel

Hanshu YAN 19 Nov 12, 2022
PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features

PRIN/SPRIN: On Extracting Point-wise Rotation Invariant Features Overview This repository is the Pytorch implementation of PRIN/SPRIN: On Extracting P

Yang You 17 Mar 02, 2022
《LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification》(AAAI 2021) GitHub:

LightXML: Transformer with dynamic negative sampling for High-Performance Extreme Multi-label Text Classification

76 Dec 05, 2022
nn_builder lets you build neural networks with less boilerplate code

nn_builder lets you build neural networks with less boilerplate code. You specify the type of network you want and it builds it. Install pip install n

Petros Christodoulou 157 Nov 20, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023