Connectionist Temporal Classification (CTC) decoding algorithms: best path, beam search, lexicon search, prefix search, and token passing. Implemented in Python.

Overview

CTC Decoding Algorithms

Update 2021: installable Python package

Python implementation of some common Connectionist Temporal Classification (CTC) decoding algorithms. A minimalistic language model is provided.

Installation

  • Go to the root level of the repository
  • Execute pip install .
  • Go to tests/ and execute pytest to check if installation worked

Usage

Basic usage

Here is a minimalistic executable example:

import numpy as np
from ctc_decoder import best_path, beam_search

mat = np.array([[0.4, 0, 0.6], [0.4, 0, 0.6]])
chars = 'ab'

print(f'Best path: "{best_path(mat, chars)}"')
print(f'Beam search: "{beam_search(mat, chars)}"')

The output mat (numpy array, softmax already applied) of the CTC-trained neural network is expected to have shape TxC and is passed as the first argument to the decoders. T is the number of time-steps, and C the number of characters (the CTC-blank is the last element). The characters that can be predicted by the neural network are passed as the chars string to the decoder. Decoders return the decoded string.
Running the code outputs:

Best path: ""
Beam search: "a"

To see more examples on how to use the decoders, please have a look at the scripts in the tests/ folder.

Language model and BK-tree

Beam search can optionally integrate a character-level language model. Text statistics (bigrams) are used by beam search to improve reading accuracy.

from ctc_decoder import beam_search, LanguageModel

# create language model instance from a (large) text
lm = LanguageModel('this is some text', chars)

# and use it in the beam search decoder
res = beam_search(mat, chars, lm=lm)

The lexicon search decoder computes a first approximation with best path decoding. Then, it uses a BK-tree to retrieve similar words, scores them and finally returns the best scoring word. The BK-tree is created by providing a list of dictionary words. A tolerance parameter defines the maximum edit distance from the query word to the returned dictionary words.

from ctc_decoder import lexicon_search, BKTree

# create BK-tree from a list of words
bk_tree = BKTree(['words', 'from', 'a', 'dictionary'])

# and use the tree in the lexicon search
res = lexicon_search(mat, chars, bk_tree, tolerance=2)

Usage with deep learning frameworks

Some notes:

  • No adapter for TensorFlow or PyTorch is provided
  • Apply softmax already in the model
  • Convert to numpy array
  • Usually, the output of an RNN layer rnn_output has shape TxBxC, with B the batch dimension
    • Decoders work on single batch elements of shape TxC
    • Therefore, iterate over all batch elements and apply the decoder to each of them separately
    • Example: extract matrix of batch element 0 mat = rnn_output[:, 0, :]
  • The CTC-blank is expected to be the last element along the character dimension
    • TensorFlow has the CTC-blank as last element, so nothing to do here
    • PyTorch, however, has the CTC-blank as first element by default, so you have to move it to the end, or change the default setting

List of provided decoders

Recommended decoders:

  • best_path: best path (or greedy) decoder, the fastest of all algorithms, however, other decoders often perform better
  • beam_search: beam search decoder, optionally integrates a character-level language model, can be tuned via the beam width parameter
  • lexicon_search: lexicon search decoder, returns the best scoring word from a dictionary

Other decoders, from my experience not really suited for practical purposes, but might be used for experiments or research:

  • prefix_search: prefix search decoder
  • token_passing: token passing algorithm
  • Best path decoder implementation in OpenCL (see extras/ folder)

This paper gives suggestions when to use best path decoding, beam search decoding and token passing.

Documentation of test cases and data

References

Owner
Harald Scheidl
Interested in computer vision, deep learning, C++ and Python.
Harald Scheidl
Correctly generate plurals, ordinals, indefinite articles; convert numbers to words

NAME inflect.py - Correctly generate plurals, singular nouns, ordinals, indefinite articles; convert numbers to words. SYNOPSIS import inflect p = in

Jason R. Coombs 762 Dec 29, 2022
Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors"

SWRM Code for Findings of ACL 2022 Paper "Sentiment Word Aware Multimodal Refinement for Multimodal Sentiment Analysis with ASR Errors" Clone Clone th

14 Jan 03, 2023
一个基于Nonebot2和go-cqhttp的娱乐性qq机器人

Takker - 一个普通的QQ机器人 此项目为基于 Nonebot2 和 go-cqhttp 开发,以 Sqlite 作为数据库的QQ群娱乐机器人 关于 纯兴趣开发,部分功能借鉴了大佬们的代码,作为Q群的娱乐+功能性Bot 声明 此项目仅用于学习交流,请勿用于非法用途 这是开发者的第一个Pytho

风屿 79 Dec 29, 2022
Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

SEW (Squeezed and Efficient Wav2vec) The repo contains the code of the paper "Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speec

ASAPP Research 67 Dec 01, 2022
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022
Finally decent dictionaries based on Wiktionary for your beloved eBook reader.

eBook Reader Dictionaries Finally, decent dictionaries based on Wiktionary for your beloved eBook reader. Dictionaries Catalan 🚧 Ελληνικά (help welco

Mickaël Schoentgen 163 Dec 31, 2022
Command Line Text-To-Speech using Google TTS

cli-tts Thanks to gTTS by @pndurette! This is an interactive command line text-to-speech tool using Google TTS. Just type text and the voice will be p

ReekyStive 3 Nov 11, 2022
构建一个多源(公众号、RSS)、干净、个性化的阅读环境

2C 构建一个多源(公众号、RSS)、干净、个性化的阅读环境 作为一名微信公众号的重度用户,公众号一直被我设为汲取知识的地方。随着使用程度的增加,相信大家或多或少会有一个比较头疼的问题——广告问题。 假设你关注的公众号有十来个,若一个公众号两周接一次广告,理论上你会面临二十多次广告,实际上会更多,运

howie.hu 678 Dec 28, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
[KBS] Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks

#Sentic GCN Introduction This repository was used in our paper: Aspect-Based Sentiment Analysis via Affective Knowledge Enhanced Graph Convolutional N

Akuchi 35 Nov 16, 2022
Score-Based Point Cloud Denoising (ICCV'21)

Score-Based Point Cloud Denoising (ICCV'21) [Paper] https://arxiv.org/abs/2107.10981 Installation Recommended Environment The code has been tested in

Shitong Luo 79 Dec 26, 2022
Google's Meena transformer chatbot implementation

Here's my attempt at recreating Meena, a state of the art chatbot developed by Google Research and described in the paper Towards a Human-like Open-Domain Chatbot.

Francesco Pham 94 Dec 25, 2022
My Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Performance on Text Classification Tasks using Tensorflow

Easy Data Augmentation Implementation This repository contains my Implementation for the paper EDA: Easy Data Augmentation Techniques for Boosting Per

Aflah 9 Oct 31, 2022
ZUNIT - Toward Zero-Shot Unsupervised Image-to-Image Translation

ZUNIT Dependencies you can install all the dependencies by pip install -r requirements.txt Datasets Download CUB dataset. Unzip the birds.zip at ./da

Chen Yuanqi 9 Jun 24, 2022
Blender addon - Scrub timeline from viewport with a shortcut

Viewport scrub timeline Move in the timeline directly in viewport and snap to nearest keyframe Note : This standalone feature will be added in the nat

Samuel Bernou 40 Nov 07, 2022
结巴中文分词

jieba “结巴”中文分词:做最好的 Python 中文分词组件 "Jieba" (Chinese for "to stutter") Chinese text segmentation: built to be the best Python Chinese word segmentation

Sun Junyi 29.8k Jan 02, 2023
Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration

Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration This is the official repository for the EMNLP 2021 long pa

70 Dec 11, 2022
Mlcode - Continuous ML API Integrations

mlcode Basic APIs for ML applications. Django REST Application Contains REST API

Sujith S 1 Jan 01, 2022
BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

BMInf (Big Model Inference) is a low-resource inference package for large-scale pretrained language models (PLMs).

OpenBMB 377 Jan 02, 2023