Handwritten Text Recognition (HTR) system implemented with TensorFlow.

Overview

Handwritten Text Recognition with TensorFlow

  • Update 2021: more robust model, faster dataloader, word beam search decoder also available for Windows
  • Update 2020: code is compatible with TF2

Handwritten Text Recognition (HTR) system implemented with TensorFlow (TF) and trained on the IAM off-line HTR dataset. This Neural Network (NN) model recognizes the text contained in the images of segmented words as shown in the illustration below. 3/4 of the words from the validation-set are correctly recognized, and the character error rate is around 10%.

htr

Run demo

Download the model trained on the IAM dataset. Put the contents of the downloaded file model.zip into the model directory of the repository. Afterwards, go to the src directory and run python main.py. The input image and the expected output is shown below.

test

> python main.py
Init with stored values from ../model/snapshot-39
Recognized: "Hello"
Probability: 0.42098119854927063

Command line arguments

  • --train: train the NN on 95% of the dataset samples and validate on the remaining 5%
  • --validate: validate the trained NN
  • --decoder: select from CTC decoders "bestpath", "beamsearch", and "wordbeamsearch". Defaults to "bestpath". For option "wordbeamsearch" see details below
  • --batch_size: batch size
  • --data_dir: directory containing IAM dataset (with subdirectories img and gt)
  • --fast: use LMDB to load images (faster than loading image files from disk)
  • --dump: dumps the output of the NN to CSV file(s) saved in the dump folder. Can be used as input for the CTCDecoder

If neither --train nor --validate is specified, the NN infers the text from the test image (data/test.png).

Integrate word beam search decoding

The word beam search decoder can be used instead of the two decoders shipped with TF. Words are constrained to those contained in a dictionary, but arbitrary non-word character strings (numbers, punctuation marks) can still be recognized. The following illustration shows a sample for which word beam search is able to recognize the correct text, while the other decoders fail.

decoder_comparison

Follow these instructions to integrate word beam search decoding:

  1. Clone repository CTCWordBeamSearch
  2. Compile and install by running pip install . at the root level of the CTCWordBeamSearch repository
  3. Specify the command line option --decoder wordbeamsearch when executing main.py to actually use the decoder

The dictionary is automatically created in training and validation mode by using all words contained in the IAM dataset (i.e. also including words from validation set) and is saved into the file data/corpus.txt. Further, the manually created list of word-characters can be found in the file model/wordCharList.txt. Beam width is set to 50 to conform with the beam width of vanilla beam search decoding.

Train model with IAM dataset

Follow these instructions to get the IAM dataset:

  • Register for free at this website
  • Download words/words.tgz
  • Download ascii/words.txt
  • Create a directory for the dataset on your disk, and create two subdirectories: img and gt
  • Put words.txt into the gt directory
  • Put the content (directories a01, a02, ...) of words.tgz into the img directory

Start the training

  • Delete files from model directory if you want to train from scratch
  • Go to the src directory and execute python main.py --train --data_dir path/to/IAM
  • Training stops after a fixed number of epochs without improvement

Fast image loading

Loading and decoding the png image files from the disk is the bottleneck even when using only a small GPU. The database LMDB is used to speed up image loading:

  • Go to the src directory and run createLMDB.py --data_dir path/to/IAM with the IAM data directory specified
  • A subfolder lmdb is created in the IAM data directory containing the LMDB files
  • When training the model, add the command line option --fast

The dataset should be located on an SSD drive. Using the --fast option and a GTX 1050 Ti training takes around 3h with a batch size of 500.

Information about model

The model is a stripped-down version of the HTR system I implemented for my thesis. What remains is what I think is the bare minimum to recognize text with an acceptable accuracy. It consists of 5 CNN layers, 2 RNN (LSTM) layers and the CTC loss and decoding layer. The illustration below gives an overview of the NN (green: operations, pink: data flowing through NN) and here follows a short description:

  • The input image is a gray-value image and has a size of 128x32
  • 5 CNN layers map the input image to a feature sequence of size 32x256
  • 2 LSTM layers with 256 units propagate information through the sequence and map the sequence to a matrix of size 32x80. Each matrix-element represents a score for one of the 80 characters at one of the 32 time-steps
  • The CTC layer either calculates the loss value given the matrix and the ground-truth text (when training), or it decodes the matrix to the final text with best path decoding or beam search decoding (when inferring)

nn_overview

References

Owner
Harald Scheidl
Interested in computer vision, deep learning, C++ and Python.
Harald Scheidl
Virtual Zoom Gesture using OpenCV

Virtual_Zoom_Gesture I have created a virtual zoom gesture where we can Zoom in and Zoom out any image and even we can move that image anywhere on the

Mudit Sinha 2 Dec 26, 2021
Detect textlines in document images

Textline Detection Detect textlines in document images Introduction This tool performs border, region and textline detection from document image data

QURATOR-SPK 70 Jun 30, 2022
A curated list of papers and resources for scene text detection and recognition

Awesome Scene Text A curated list of papers and resources for scene text detection and recognition The year when a paper was first published, includin

Jan Zdenek 43 Mar 15, 2022
Detecting Text in Natural Image with Connectionist Text Proposal Network (ECCV'16)

Detecting Text in Natural Image with Connectionist Text Proposal Network The codes are used for implementing CTPN for scene text detection, described

Tian Zhi 1.3k Dec 22, 2022
SemTorch

SemTorch This repository contains different deep learning architectures definitions that can be applied to image segmentation. All the architectures a

David Lacalle Castillo 154 Dec 07, 2022
This is used to convert a string to an Image with Handwritten Characters.

Text-to-Handwriting-using-python This is used to convert a string to an Image with Handwritten Characters. text_to_handwriting(string: str, save_to: s

Akashdeep Mahata 3 Aug 15, 2022
A program that takes in the hand gesture displayed by the user and translates ASL.

Interactive-ASL-Recognition Using the framework mediapipe made by google, OpenCV library and through self teaching, I was able to create a program tha

Riddhi Bajaj 3 Nov 22, 2021
Distilling Knowledge via Knowledge Review, CVPR 2021

ReviewKD Distilling Knowledge via Knowledge Review Pengguang Chen, Shu Liu, Hengshuang Zhao, Jiaya Jia This project provides an implementation for the

DV Lab 194 Dec 28, 2022
PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV)

About PyQT5 app that colorize black & white pictures using CNN(use pre-trained model which was made with OpenCV) Colorizor Приложение для проекта Yand

1 Apr 04, 2022
Handwritten Character Recognition using CNN

Handwritten Character Recognition using CNN Problem Definition The main objective of this project is to solve the problem of handwritten character rec

Mohit Kaushik 4 Mar 02, 2022
This repository summarized computer vision theories.

This repository summarized computer vision theories.

3 Feb 04, 2022
The CIS OCR PostCorrectionTool

The CIS OCR Post Correction Tool PoCoTo Source code for the Java-based PoCoTo client enabling fast interactive batch corrections of complete OCR error

CIS OCR Group 36 Dec 15, 2022
TextBoxes re-implement using tensorflow

TextBoxes-TensorFlow TextBoxes re-implementation using tensorflow. This project is greatly inspired by slim project And many functions are modified ba

Gu Xiaodong 44 Dec 29, 2022
This project modify tensorflow object detection api code to predict oriented bounding boxes. It can be used for scene text detection.

This is an oriented object detector based on tensorflow object detection API. Most of the code is not changed except for those related to the need of

Dafang He 30 Oct 22, 2022
Solution for Problem 1 by team codesquad for AIDL 2020. Uses ML Kit for OCR and OpenCV for image processing

CodeSquad PS1 Solution for Problem Statement 1 for AIDL 2020 conducted by @unifynd technologies. Problem Given images of bills/invoices, the task was

Burhanuddin Udaipurwala 111 Nov 27, 2022
Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Omdena-abuja-anpd - Automatic Number Plate Detection for the security of lives and properties using Computer Vision.

Abdulazeez Jimoh 1 Jan 01, 2022
document image degradation

ocrodeg The ocrodeg package is a small Python library implementing document image degradation for data augmentation for handwriting recognition and OC

NVIDIA Research Projects 134 Nov 18, 2022
An OCR evaluation tool

dinglehopper dinglehopper is an OCR evaluation tool and reads ALTO, PAGE and text files. It compares a ground truth (GT) document page with a OCR resu

QURATOR-SPK 40 Dec 20, 2022
A tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background.

EasyLaMa (WIP) This is a tool combining EasyOCR and LaMa to automatically detect text and replace it with an inpainted background. Installation For GP

3 Sep 17, 2022
Code for the AAAI 2018 publication "SEE: Towards Semi-Supervised End-to-End Scene Text Recognition"

SEE: Towards Semi-Supervised End-to-End Scene Text Recognition Code for the AAAI 2018 publication "SEE: Towards Semi-Supervised End-to-End Scene Text

Christian Bartz 572 Jan 05, 2023