Linescanning - Package for (pre)processing of anatomical and (linescanning) fMRI data

Overview

line scanning repository

plot

This repository contains all of the tools used during the acquisition and postprocessing of line scanning data at the Spinoza Centre for Neuroimaging in Amsterdam. The script master controls the modules prefixed by spinoza_, which in turn call upon various scripts in the utils and bin directory. The scripts in the latter folders are mostly helper scripts to make life a tad easier. The repository contains a mix of languages in bash, python, and matlab.

In active development - do not use unless otherwise instructed by repo owners

Documentation for this package can be found at readthedocs (not up to date)

Policy & To Do

  • install using python setup.py develop
  • Docstrings in numpy format.
  • PEP8 - please set your editor to autopep8 on save!
  • Documentation with Sphinx (WIP)
  • Explore options to streamline code
  • Examples of applications for package (integration of pycortex & pRFpy)

overview of the pipeline

how to set up

Clone the repository: git clone https://github.com/gjheij/linescanning.git.

To setup the bash environment, edit setup file linescanning/shell/spinoza_setup:

  • line 76: add the path to your matlab installation if available (should be, for better anatomicall preprocessing)
  • line 87: add the path to your SPM installation
  • line 92: add your project name
  • line 97: add the path to project name as defined in line 92
  • line 102: add whether you're using (ME)MP(2)RAGE. This is required because the pipeline allows the usage of the average of an MP2RAGE and MP2RAGEME acquisition
  • line 105: add which type of data you're using (generally this will be the same as line 102)

Go to linescanning/shell and hit ./spinoza_setup setup setup. This will print a set of instructions that you need to follow. If all goes well this will make all the script executable, set all the paths, and install the python modules. The repository comes with a conda environment file, which can be activated with: conda create --name myenv --file environment.yml.

How to plan the line

plot

We currently aim to have two separate sessions: in the first session, we acquire high resolution anatomical scans and perform a population receptive field (pRF-) mapping paradigm (Dumoulin and Wandell, 2008) to delineate the visual field. After this session, we create surfaces of the brain and map the pRFs onto that via fMRIprep and pRFpy. We then select a certain vertex based on the parameters extracted from the pRF-mapping: eccentricity, size, and polar angle. Using these parameters, we can find an optimal vertex. We can obtain the vertex position, while by calculating the normal vector, we obtain the orientation that line should have (parellel to the normal vector and through the vertex point). Combining this information, we know how the line should be positioned in the first session anatomy. In the second session, we first acquire a low-resolution MP2RAGE with the volume coil. This is exported and registered to the first session anatomy during the second session to obtain the translations and rotations needed to map the line from the first session anatomy to the currently active second session by inputting the values in the MR-console. This procedure from registration to calculation of MR-console values is governed by spinoza_lineplanning and can be called with master -m 00 -s -h .

Owner
Jurjen Heij
Jurjen Heij
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
VISSL is FAIR's library of extensible, modular and scalable components for SOTA Self-Supervised Learning with images.

What's New Below we share, in reverse chronological order, the updates and new releases in VISSL. All VISSL releases are available here. [Oct 2021]: V

Meta Research 2.9k Jan 07, 2023
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields"

NeRF++ Codebase for arXiv preprint "NeRF++: Analyzing and Improving Neural Radiance Fields" Work with 360 capture of large-scale unbounded scenes. Sup

Kai Zhang 722 Dec 28, 2022
The most simple and minimalistic navigation dashboard.

Navigation This project follows a goal to have simple and lightweight dashboard with different links. I use it to have my own self-hosted service dash

Yaroslav 23 Dec 23, 2022
Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction

Full Transformer Framework for Robust Point Cloud Registration with Deep Information Interaction. arxiv This repository contains python scripts for tr

12 Dec 12, 2022
Normalization Matters in Weakly Supervised Object Localization (ICCV 2021)

Normalization Matters in Weakly Supervised Object Localization (ICCV 2021) 99% of the code in this repository originates from this link. ICCV 2021 pap

Jeesoo Kim 10 Feb 01, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Embedding Transfer with Label Relaxation for Improved Metric Learning Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label

Sungyeon Kim 37 Dec 06, 2022
Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation

Implementation for paper LadderNet: Multi-path networks based on U-Net for medical image segmentation This implementation is based on orobix implement

Juntang Zhuang 116 Sep 06, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
Official implementation of the NeurIPS 2021 paper Online Learning Of Neural Computations From Sparse Temporal Feedback

Online Learning Of Neural Computations From Sparse Temporal Feedback This repository is the official implementation of the NeurIPS 2021 paper Online L

Lukas Braun 3 Dec 15, 2021
A collection of SOTA Image Classification Models in PyTorch

A collection of SOTA Image Classification Models in PyTorch

sithu3 85 Dec 30, 2022
Download from Onlyfans.com.

OnlySave: Onlyfans downloader Getting Started: Download the setup executable from the latest release. Install and run. Only works on Windows currently

4 May 30, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Monitora la qualità della ricezione dei segnali radio nelle province siciliane.

FMap-server Monitora la qualità della ricezione dei segnali radio nelle province siciliane. Conversion data Frequency - StationName maps are stored in

Triglie 5 May 24, 2021