Convert ONNX model graph to Keras model format.

Overview

onnx2keras

ONNX to Keras deep neural network converter.

GitHub License Python Version Downloads PyPI

Requirements

TensorFlow 2.0

API

onnx_to_keras(onnx_model, input_names, input_shapes=None, name_policy=None, verbose=True, change_ordering=False) -> {Keras model}

onnx_model: ONNX model to convert

input_names: list with graph input names

input_shapes: override input shapes (experimental)

name_policy: ['renumerate', 'short', 'default'] override layer names (experimental)

verbose: detailed output

change_ordering: change ordering to HWC (experimental)

Getting started

ONNX model

import onnx
from onnx2keras import onnx_to_keras

# Load ONNX model
onnx_model = onnx.load('resnet18.onnx')

# Call the converter (input - is the main model input name, can be different for your model)
k_model = onnx_to_keras(onnx_model, ['input'])

Keras model will be stored to the k_model variable. So simple, isn't it?

PyTorch model

Using ONNX as intermediate format, you can convert PyTorch model as well.

import numpy as np
import torch
from torch.autograd import Variable
from pytorch2keras.converter import pytorch_to_keras
import torchvision.models as models

if __name__ == '__main__':
    input_np = np.random.uniform(0, 1, (1, 3, 224, 224))
    input_var = Variable(torch.FloatTensor(input_np))
    model = models.resnet18()
    model.eval()
    k_model = \
        pytorch_to_keras(model, input_var, [(3, 224, 224,)], verbose=True, change_ordering=True)

    for i in range(3):
        input_np = np.random.uniform(0, 1, (1, 3, 224, 224))
        input_var = Variable(torch.FloatTensor(input_np))
        output = model(input_var)
        pytorch_output = output.data.numpy()
        keras_output = k_model.predict(np.transpose(input_np, [0, 2, 3, 1]))
        error = np.max(pytorch_output - keras_output)
        print('error -- ', error)  # Around zero :)

Deplying model as frozen graph

You can try using the snippet below to convert your onnx / PyTorch model to frozen graph. It may be useful for deploy for Tensorflow.js / for Tensorflow for Android / for Tensorflow C-API.

import numpy as np
import torch
from pytorch2keras.converter import pytorch_to_keras
from torch.autograd import Variable
import tensorflow as tf
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2


# Create and load model
model = Model()
model.load_state_dict(torch.load('model-checkpoint.pth'))
model.eval()

# Make dummy variables (and checking if the model works)
input_np = np.random.uniform(0, 1, (1, 3, 224, 224))
input_var = Variable(torch.FloatTensor(input_np))
output = model(input_var)

# Convert the model!
k_model = \
    pytorch_to_keras(model, input_var, (3, 224, 224), 
                     verbose=True, name_policy='short',
                     change_ordering=True)

# Save model to SavedModel format
tf.saved_model.save(k_model, "./models")

# Convert Keras model to ConcreteFunction
full_model = tf.function(lambda x: k_model(x))
full_model = full_model.get_concrete_function(
    tf.TensorSpec(k_model.inputs[0].shape, k_model.inputs[0].dtype))

# Get frozen ConcreteFunction
frozen_func = convert_variables_to_constants_v2(full_model)
frozen_func.graph.as_graph_def()

print("-" * 50)
print("Frozen model layers: ")
for layer in [op.name for op in frozen_func.graph.get_operations()]:
    print(layer)

print("-" * 50)
print("Frozen model inputs: ")
print(frozen_func.inputs)
print("Frozen model outputs: ")
print(frozen_func.outputs)

# Save frozen graph from frozen ConcreteFunction to hard drive
tf.io.write_graph(graph_or_graph_def=frozen_func.graph,
                  logdir="./frozen_models",
                  name="frozen_graph.pb",
                  as_text=False)

License

This software is covered by MIT License.

Owner
Grigory Malivenko
Machine Learning Engineer
Grigory Malivenko
Code and data for "Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning" (EMNLP 2021).

GD-VCR Code for Broaden the Vision: Geo-Diverse Visual Commonsense Reasoning (EMNLP 2021). Research Questions and Aims: How well can a model perform o

Da Yin 24 Oct 13, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
Pytorch implementation for "Adversarial Robustness under Long-Tailed Distribution" (CVPR 2021 Oral)

Adversarial Long-Tail This repository contains the PyTorch implementation of the paper: Adversarial Robustness under Long-Tailed Distribution, CVPR 20

Tong WU 89 Dec 15, 2022
A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi

LSTM-Time-Series-Prediction A Simple LSTM-Based Solution for "Heartbeat Signal Classification and Prediction" in Tianchi Contest. The Link of the Cont

KevinCHEN 1 Jun 13, 2022
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022
Preparation material for Dropbox interviews

Dropbox-Onsite-Interviews A guide for the Dropbox onsite interview! The Dropbox interview question bank is very small. The bank has been in a Chinese

386 Dec 31, 2022
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
MinHash, LSH, LSH Forest, Weighted MinHash, HyperLogLog, HyperLogLog++, LSH Ensemble

datasketch: Big Data Looks Small datasketch gives you probabilistic data structures that can process and search very large amount of data super fast,

Eric Zhu 1.9k Jan 07, 2023
NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling

NU-Wave: A Diffusion Probabilistic Model for Neural Audio Upsampling For Official repo of NU-Wave: A Diffusion Probabilistic Model for Neural Audio Up

Rishikesh (ऋषिकेश) 38 Oct 11, 2022
Code accompanying "Learning What To Do by Simulating the Past", ICLR 2021.

Learning What To Do by Simulating the Past This repository contains code that implements the Deep Reward Learning by Simulating the Past (Deep RSLP) a

Center for Human-Compatible AI 24 Aug 07, 2021
Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for the task of Visual Document Understanding (VDU)

DocFormer - PyTorch Implementation of DocFormer: End-to-End Transformer for Document Understanding, a multi-modal transformer based architecture for t

171 Jan 06, 2023
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
sense-py-AnishaBaishya created by GitHub Classroom

Compute Statistics Here we compute statistics for a bunch of numbers. This project uses the unittest framework to test functionality. Pass the tests T

1 Oct 21, 2021
An end-to-end library for editing and rendering motion of 3D characters with deep learning [SIGGRAPH 2020]

Deep-motion-editing This library provides fundamental and advanced functions to work with 3D character animation in deep learning with Pytorch. The co

1.2k Dec 29, 2022
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

Some tentative models that incorporate label propagation to graph neural networks for graph representation learning in nodes, links or graphs.

zshicode 1 Nov 18, 2021
Recurrent Neural Network Tutorial, Part 2 - Implementing a RNN in Python and Theano

Please read the blog post that goes with this code! Jupyter Notebook Setup System Requirements: Python, pip (Optional) virtualenv To start the Jupyter

Denny Britz 863 Dec 15, 2022
PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

PyTorch version of Stable Baselines, reliable implementations of reinforcement learning algorithms.

DLR-RM 4.7k Jan 01, 2023
Code for the paper "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Jukebox Code for "Jukebox: A Generative Model for Music" Paper Blog Explorer Colab Insta

OpenAI 6k Jan 02, 2023
A lightweight python AUTOmatic-arRAY library.

A lightweight python AUTOmatic-arRAY library. Write numeric code that works for: numpy cupy dask autograd jax mars tensorflow pytorch ... and indeed a

Johnnie Gray 62 Dec 27, 2022