We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction

Overview

HuggingMolecules

License

We envision models that are pre-trained on a vast range of domain-relevant tasks to become key for molecule property prediction. This repository aims to give easy access to state-of-the-art pre-trained models.

Quick tour

To quickly fine-tune a model on a dataset using the pytorch lightning package follow the below example based on the MAT model and the freesolv dataset:

from huggingmolecules import MatModel, MatFeaturizer

# The following import works only from the source code directory:
from experiments.src import TrainingModule, get_data_loaders

from torch.nn import MSELoss
from torch.optim import Adam

from pytorch_lightning import Trainer
from pytorch_lightning.metrics import MeanSquaredError

# Build and load the pre-trained model and the appropriate featurizer:
model = MatModel.from_pretrained('mat_masking_20M')
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')

# Build the pytorch lightning training module:
pl_module = TrainingModule(model,
                           loss_fn=MSELoss(),
                           metric_cls=MeanSquaredError,
                           optimizer=Adam(model.parameters()))

# Build the data loader for the freesolv dataset:
train_dataloader, _, _ = get_data_loaders(featurizer,
                                          batch_size=32,
                                          task_name='ADME',
                                          dataset_name='hydrationfreeenergy_freesolv')

# Build the pytorch lightning trainer and fine-tune the module on the train dataset:
trainer = Trainer(max_epochs=100)
trainer.fit(pl_module, train_dataloader=train_dataloader)

# Make the prediction for the batch of SMILES strings:
batch = featurizer(['C/C=C/C', '[C]=O'])
output = pl_module.model(batch)

Installation

Create your conda environment and install the rdkit package:

conda create -n huggingmolecules python=3.8.5
conda activate huggingmolecules
conda install -c conda-forge rdkit==2020.09.1

Then install huggingmolecules from the cloned directory:

conda activate huggingmolecules
pip install -e ./src

Project Structure

The project consists of two main modules: src/ and experiments/ modules:

  • The src/ module contains abstract interfaces for pre-trained models along with their implementations based on the pytorch library. This module makes configuring, downloading and running existing models easy and out-of-the-box.
  • The experiments/ module makes use of abstract interfaces defined in the src/ module and implements scripts based on the pytorch lightning package for running various experiments. This module makes training, benchmarking and hyper-tuning of models flawless and easily extensible.

Supported models architectures

Huggingmolecules currently provides the following models architectures:

For ease of benchmarking, we also include wrappers in the experiments/ module for three other models architectures:

The src/ module

The implementations of the models in the src/ module are divided into three modules: configuration, featurization and models module. The relation between these modules is shown on the following examples based on the MAT model:

Configuration examples

from huggingmolecules import MatConfig

# Build the config with default parameters values, 
# except 'd_model' parameter, which is set to 1200:
config = MatConfig(d_model=1200)

# Build the pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')

# Build the pre-defined config with 'init_type' parameter set to 'normal':
config = MatConfig.from_pretrained('mat_masking_20M', init_type='normal')

# Save the pre-defined config with the previous modification:
config.save_to_cache('mat_masking_20M_normal.json')

# Restore the previously saved config:
config = MatConfig.from_pretrained('mat_masking_20M_normal.json')

Featurization examples

from huggingmolecules import MatConfig, MatFeaturizer

# Build the featurizer with pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')
featurizer = MatFeaturizer(config)

# Build the featurizer in one line:
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')

# Encode (featurize) the batch of two SMILES strings: 
batch = featurizer(['C/C=C/C', '[C]=O'])

Models examples

from huggingmolecules import MatConfig, MatFeaturizer, MatModel

# Build the model with the pre-defined config:
config = MatConfig.from_pretrained('mat_masking_20M')
model = MatModel(config)

# Load the pre-trained weights 
# (which do not include the last layer of the model)
model.load_weights('mat_masking_20M')

# Build the model and load the pre-trained weights in one line:
model = MatModel.from_pretrained('mat_masking_20M')

# Encode (featurize) the batch of two SMILES strings: 
featurizer = MatFeaturizer.from_pretrained('mat_masking_20M')
batch = featurizer(['C/C=C/C', '[C]=O'])

# Feed the model with the encoded batch:
output = model(batch)

# Save the weights of the model (usually after the fine-tuning process):
model.save_weights('tuned_mat_masking_20M.pt')

# Load the previously saved weights
# (which now includes all layers of the model):
model.load_weights('tuned_mat_masking_20M.pt')

# Load the previously saved weights, but without 
# the last layer of the model ('generator' in the case of the 'MatModel')
model.load_weights('tuned_mat_masking_20M.pt', excluded=['generator'])

# Build the model and load the previously saved weights:
config = MatConfig.from_pretrained('mat_masking_20M')
model = MatModel.from_pretrained('tuned_mat_masking_20M.pt',
                                 excluded=['generator'],
                                 config=config)

Running tests

To run base tests for src/ module, type:

pytest src/ --ignore=src/tests/downloading/

To additionally run tests for downloading module (which will download all models to your local computer and therefore may be slow), type:

pytest src/tests/downloading

The experiments/ module

Requirements

In addition to dependencies defined in the src/ module, the experiments/ module goes along with few others. To install them, run:

pip install -r experiments/requirements.txt

The following packages are crucial for functioning of the experiments/ module:

Neptune.ai

In addition, we recommend installing the neptune.ai package:

  1. Sign up to neptune.ai at https://neptune.ai/.

  2. Get your Neptune API token (see getting-started for help).

  3. Export your Neptune API token to NEPTUNE_API_TOKEN environment variable.

  4. Install neptune-client: pip install neptune-client.

  5. Enable neptune.ai in the experiments/configs/setup.gin file.

  6. Update neptune.project_name parameters in experiments/configs/bases/*.gin files.

Running scripts:

We recommend running experiments scripts from the source code. For the moment there are three scripts implemented:

  • experiments/scripts/train.py - for training with the pytorch lightning package
  • experiments/scripts/tune_hyper.py - for hyper-parameters tuning with the optuna package
  • experiments/scripts/benchmark.py - for benchmarking based on the hyper-parameters tuning (grid-search)

In general running scripts can be done with the following syntax:

python -m experiments.scripts. /
       -d  / 
       -m  /
       -b 

Then the script .py runs with functions/methods parameters values defined in the following gin-config files:

  1. experiments/configs/bases/.gin
  2. experiments/configs/datasets/.gin
  3. experiments/configs/models/.gin

If the binding flag -b is used, then bindings defined in overrides corresponding bindings defined in above gin-config files.

So for instance, to fine-tune the MAT model (pre-trained on masking_20M task) on the freesolv dataset using GPU 1, simply run:

python -m experiments.scripts.train /
       -d freesolv / 
       -m mat /
       -b model.pretrained_name=\"mat_masking_20M\"#train.gpus=[1]

or equivalently:

python -m experiments.scripts.train /
       -d freesolv / 
       -m mat /
       --model.pretrained_name mat_masking_20M /
       --train.gpus [1]

Local dataset

To use a local dataset, create an appropriate gin-config file in the experiments/configs/datasets directory and specify the data.data_path parameter within. For details see the get_data_split implementation.

Benchmarking

For the moment there is one benchmark available. It works as follows:

  • experiments/scripts/benchmark.py: on the given dataset we fine-tune the given model on 10 learning rates and 6 seeded data splits (60 fine-tunings in total). Then we choose that learning rate that minimizes an averaged (on 6 data splits) validation metric (metric computed on the validation dataset, e.g. RMSE). The result is the averaged value of test metric for the chosen learning rate.

Running a benchmark is essentially the same as running any other script from the experiments/ module. So for instance to benchmark the vanilla MAT model (without pre-training) on the Caco-2 dataset using GPU 0, simply run:

python -m experiments.scripts.benchmark /
       -d caco2 / 
       -m mat /
       --model.pretrained_name None /
       --train.gpus [0]

However, the above script will only perform 60 fine-tunings. It won't compute the final benchmark result. To do that wee need to run:

python -m experiments.scripts.benchmark --results_only /
       -d caco2 / 
       -m mat

The above script won't perform any fine-tuning, but will only compute the benchmark result. If we had neptune enabled in experiments/configs/setup.gin, all data necessary to compute the result will be fetched from the neptune server.

Benchmark results

We performed the benchmark described in Benchmarking as experiments/scripts/benchmark.py for various models architectures and pre-training tasks.

Summary

We report mean/median ranks of tested models across all datasets (both regression and classification ones). For detailed results see Regression and Classification sections.

model mean rank rank std
MAT 200k 5.6 3.5
MAT 2M 5.3 3.4
MAT 20M 4.1 2.2
GROVER Base 3.8 2.7
GROVER Large 3.6 2.4
ChemBERTa 7.4 2.8
MolBERT 5.9 2.9
D-MPNN 6.3 2.3
D-MPNN 2d 6.4 2.0
D-MPNN mc 5.3 2.1

Regression

As the metric we used MAE for QM7 and RMSE for the rest of datasets.

model FreeSolv Caco-2 Clearance QM7 Mean rank
MAT 200k 0.913 ± 0.196 0.405 ± 0.030 0.649 ± 0.341 87.578 ± 15.375 5.25
MAT 2M 0.898 ± 0.165 0.471 ± 0.070 0.655 ± 0.327 81.557 ± 5.088 6.75
MAT 20M 0.854 ± 0.197 0.432 ± 0.034 0.640 ± 0.335 81.797 ± 4.176 5.0
Grover Base 0.917 ± 0.195 0.419 ± 0.029 0.629 ± 0.335 62.266 ± 3.578 3.25
Grover Large 0.950 ± 0.202 0.414 ± 0.041 0.627 ± 0.340 64.941 ± 3.616 2.5
ChemBERTa 1.218 ± 0.245 0.430 ± 0.013 0.647 ± 0.314 177.242 ± 1.819 8.0
MolBERT 1.027 ± 0.244 0.483 ± 0.056 0.633 ± 0.332 177.117 ± 1.799 8.0
Chemprop 1.061 ± 0.168 0.446 ± 0.064 0.628 ± 0.339 74.831 ± 4.792 5.5
Chemprop 2d 1 1.038 ± 0.235 0.454 ± 0.049 0.628 ± 0.336 77.912 ± 10.231 6.0
Chemprop mc 2 0.995 ± 0.136 0.438 ± 0.053 0.627 ± 0.337 75.575 ± 4.683 4.25

1 chemprop with additional rdkit_2d_normalized features generator
2 chemprop with additional morgan_count features generator

Classification

We used ROC AUC as the metric.

model HIA Bioavailability PPBR Tox21 (NR-AR) BBBP Mean rank
MAT 200k 0.943 ± 0.015 0.660 ± 0.052 0.896 ± 0.027 0.775 ± 0.035 0.709 ± 0.022 5.8
MAT 2M 0.941 ± 0.013 0.712 ± 0.076 0.905 ± 0.019 0.779 ± 0.056 0.713 ± 0.022 4.2
MAT 20M 0.935 ± 0.017 0.732 ± 0.082 0.891 ± 0.019 0.779 ± 0.056 0.735 ± 0.006 3.4
Grover Base 0.931 ± 0.021 0.750 ± 0.037 0.901 ± 0.036 0.750 ± 0.085 0.735 ± 0.006 4.0
Grover Large 0.932 ± 0.023 0.747 ± 0.062 0.901 ± 0.033 0.757 ± 0.057 0.757 ± 0.057 4.2
ChemBERTa 0.923 ± 0.032 0.666 ± 0.041 0.869 ± 0.032 0.779 ± 0.044 0.717 ± 0.009 7.0
MolBERT 0.942 ± 0.011 0.737 ± 0.085 0.889 ± 0.039 0.761 ± 0.058 0.742 ± 0.020 4.6
Chemprop 0.924 ± 0.069 0.724 ± 0.064 0.847 ± 0.052 0.766 ± 0.040 0.726 ± 0.008 7.0
Chemprop 2d 0.923 ± 0.015 0.712 ± 0.067 0.874 ± 0.030 0.775 ± 0.041 0.724 ± 0.006 6.8
Chemprop mc 0.924 ± 0.082 0.740 ± 0.060 0.869 ± 0.033 0.772 ± 0.041 0.722 ± 0.008 6.2
Owner
GMUM
Group of Machine Learning Research, Jagiellonian University
GMUM
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
PyTorch implementation of "Simple and Deep Graph Convolutional Networks"

Simple and Deep Graph Convolutional Networks This repository contains a PyTorch implementation of "Simple and Deep Graph Convolutional Networks".(http

chenm 253 Dec 08, 2022
Semi-Supervised Learning for Fine-Grained Classification

Semi-Supervised Learning for Fine-Grained Classification This repo contains the code of: A Realistic Evaluation of Semi-Supervised Learning for Fine-G

25 Nov 08, 2022
This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation withNoisy Multi-feedback"

Curriculum_disentangled_recommendation This is the repository of the NeurIPS 2021 paper "Curriculum Disentangled Recommendation with Noisy Multi-feedb

14 Dec 20, 2022
Generative Flow Networks for Discrete Probabilistic Modeling

Energy-based GFlowNets Code for Generative Flow Networks for Discrete Probabilistic Modeling by Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Vo

Narsil-Dinghuai Zhang 51 Dec 20, 2022
Code for A Volumetric Transformer for Accurate 3D Tumor Segmentation

VT-UNet This repo contains the supported pytorch code and configuration files to reproduce 3D medical image segmentaion results of VT-UNet. Environmen

Himashi Amanda Peiris 114 Dec 20, 2022
Implementation of DropLoss for Long-Tail Instance Segmentation in Pytorch

[AAAI 2021]DropLoss for Long-Tail Instance Segmentation [AAAI 2021] DropLoss for Long-Tail Instance Segmentation Ting-I Hsieh*, Esther Robb*, Hwann-Tz

Tim 37 Dec 02, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022
Official implementation for (Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation, CVPR-2021)

FRSKD Official implementation for Refine Myself by Teaching Myself : Feature Refinement via Self-Knowledge Distillation (CVPR-2021) Requirements Pytho

75 Dec 28, 2022
Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom

Neural Turing Machine (NTM) & Differentiable Neural Computer (DNC) with pytorch & visdom Sample on-line plotting while training(avg loss)/testing(writ

Jingwei Zhang 269 Nov 15, 2022
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection

Effect of Deep Transfer and Multi task Learning on Sperm Abnormality Detection Introduction This repository includes codes and models of "Effect of De

Amir Abbasi 5 Sep 05, 2022
This project deals with the detection of skin lesions within the ISICs dataset using YOLOv3 Object Detection with Darknet.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Skin Lesion detection using YOLO This project deal

Lalith Veerabhadrappa Badiger 1 Nov 22, 2021
SWA Object Detection

SWA Object Detection This project hosts the scripts for training SWA object detectors, as presented in our paper: @article{zhang2020swa, title={SWA

237 Nov 28, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
Augmentation for Single-Image-Super-Resolution

SRAugmentation Augmentation for Single-Image-Super-Resolution Implimentation CutBlur Cutout CutMix Cutup CutMixup Blend RGBPermutation Identity OneOf

Yubo 6 Jun 27, 2022
Distinguishing Commercial from Editorial Content in News

Distinguishing Commercial from Editorial Content in News In this repository you can find the following: An anonymized version of the data used for my

Timo Kats 3 Sep 26, 2022
Source code for "Interactive All-Hex Meshing via Cuboid Decomposition [SIGGRAPH Asia 2021]".

Interactive All-Hex Meshing via Cuboid Decomposition Video demonstration This repository contains an interactive software to the PolyCube-based hex-me

Lingxiao Li 131 Dec 05, 2022
Hard cater examples from Hopper ICLR paper

CATER-h Honglu Zhou*, Asim Kadav, Farley Lai, Alexandru Niculescu-Mizil, Martin Renqiang Min, Mubbasir Kapadia, Hans Peter Graf (*Contact: honglu.zhou

NECLA ML Group 6 May 11, 2021
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023