AIST++ API This repo contains starter code for using the AIST++ dataset.

Overview

AIST++ API

This repo contains starter code for using the AIST++ dataset. To download the dataset or explore details of this dataset, please go to our dataset website.

Installation

The code has been tested on python>=3.7. You can install the dependencies and this repo by:

pip install -r requirements.txt
python setup.py install

You also need to make sure ffmpeg is installed on your machine, if you would like to visualize the annotations using this api.

How to use

We provide demo code for loading and visualizing AIST++ annotations. Note AIST++ annotations and videos, as well as the SMPL model (for SMPL visualization only) are required to run the demo code.

The directory structure of the data is expected to be:


├── motions/
├── keypoints2d/
├── keypoints3d/
├── splits/
├── cameras/
└── ignore_list.txt


└── *.mp4


├── SMPL_MALE.pkl
└── SMPL_FEMALE.pkl

Visualize 2D keypoints annotation

The command below will plot 2D keypoints onto the raw video and save it to the directory ./visualization/.

python demos/run_vis.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --video_dir <VIDEO_DIR> \
  --save_dir ./visualization/ \
  --video_name gWA_sFM_c01_d27_mWA2_ch21 \
  --mode 2D

Visualize 3D keypoints annotation

The command below will project 3D keypoints onto the raw video using camera parameters, and save it to the directory ./visualization/.

python demos/run_vis.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --video_dir <VIDEO_DIR> \
  --save_dir ./visualization/ \
  --video_name gWA_sFM_c01_d27_mWA2_ch21 \
  --mode 3D

Visualize the SMPL joints annotation

The command below will first calculate the SMPL joint locations from our motion annotations (joint rotations and root trajectories), then project them onto the raw video and plot. The result will be saved into the directory ./visualization/.

python demos/run_vis.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --video_dir <VIDEO_DIR> \ 
  --smpl_dir <SMPL_DIR> \
  --save_dir ./visualization/ \ 
  --video_name gWA_sFM_c01_d27_mWA2_ch21 \ 
  --mode SMPL

Multi-view 3D keypoints and motion reconstruction

This repo also provides code we used for constructing this dataset from the multi-view AIST Dance Video Database. The construction pipeline starts with frame-by-frame 2D keypoint detection and manual camera estimation. Then triangulation and bundle adjustment are applied to optimize the camera parameters as well as the 3D keypoints. Finally we sequentially fit the SMPL model to 3D keypoints to get a motion sequence represented using joint angles and a root trajectory. The following figure shows our pipeline overview.

AIST++ construction pipeline overview.

The annotations in AIST++ are in COCO-format for 2D & 3D keypoints, and SMPL-format for human motion annotations. It is designed to serve general research purposes. However, in some cases you might need the data in different format (e.g., Openpose / Alphapose keypoints format, or STAR human motion format). With the code we provide, it should be easy to construct your own version of AIST++, with your own keypoint detector or human model definition.

Step 1. Assume you have your own 2D keypoint detection results stored in , you can start by preprocessing the keypoints into the .pkl format that we support. The code we used at this step is as follows but you might need to modify the script run_preprocessing.py in order to be compatible with your own data.

python processing/run_preprocessing.py \
  --keypoints_dir <KEYPOINTS_DIR> \
  --save_dir <ANNOTATIONS_DIR>/keypoints2d/

Step 2. Then you can estimate the camera parameters using your 2D keypoints. This step is optional as you can still use our camera parameter estimates which are quite accurate. At this step, you will need the /cameras/mapping.txt file which stores the mapping from videos to different environment settings.

# If you would like to estimate your own camera parameters:
python processing/run_estimate_camera.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --save_dir <ANNOTATIONS_DIR>/cameras/
# Or you can skip this step by just using our camera parameter estimates.

Step 3. Next step is to perform 3D keypoints reconstruction from multi-view 2D keypoints and camera parameters. You can just run:

python processing/run_estimate_keypoints.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --save_dir <ANNOTATIONS_DIR>/keypoints3d/

Step 4. Finally we can estimate SMPL-format human motion data by fitting the 3D keypoints to the SMPL model. If you would like to use another human model such as STAR, you will need to do some modifications in the script run_estimate_smpl.py. The following command runs SMPL fitting.

python processing/run_estimate_smpl.py \
  --anno_dir <ANNOTATIONS_DIR> \
  --smpl_dir <SMPL_DIR> \
  --save_dir <ANNOTATIONS_DIR>/motions/

Note that this step will take several days to process the entire dataset if your machine has only one GPU. In practise, we run this step on a cluster, but are only able to provide the single-threaded version.

MISC.

  • COCO-format keypoint definition:
[
"nose", 
"left_eye", "right_eye", "left_ear", "right_ear", "left_shoulder","right_shoulder", 
"left_elbow", "right_elbow", "left_wrist", "right_wrist", "left_hip", "right_hip", 
"left_knee", "right_knee", "left_ankle", "right_ankle"
]
  • SMPL-format body joint definition:
[
"root", 
"left_hip", "left_knee", "left_foot", "left_toe", 
"right_hip", "right_knee", "right_foot", "right_toe",
"waist", "spine", "chest", "neck", "head", 
"left_in_shoulder", "left_shoulder", "left_elbow", "left_wrist",
"right_in_shoulder", "right_shoulder", "right_elbow", "right_wrist"
]
Owner
Google
Google ❤️ Open Source
Google
This is the community maintained fork of ungleich's cdist (after f061fb1).

cdist This is the community maintained fork of ungleich's cdist (after f061fb1). Work is split between three repositories: cdist - implementation of t

cdist community edition 0 Aug 02, 2022
A Python software implementation of the Intel 4004 processor

Pyntel4004 A Python software implementation of the Intel 4004 processor. General Information Two pass assembler using the original mnemonics, directiv

alshapton 5 Oct 01, 2022
Decoupled Smoothing in Probabilistic Soft Logic

Decoupled Smoothing in Probabilistic Soft Logic Experiments for "Decoupled Smoothing in Probabilistic Soft Logic". Probabilistic Soft Logic Probabilis

Kushal Shingote 1 Feb 08, 2022
Runtime profiler for Streamlit, powered by pyinstrument

streamlit-profiler 🏄🏼 Runtime profiler for Streamlit, powered by pyinstrument. streamlit-profiler is a Streamlit component that helps you find out w

Johannes Rieke 23 Nov 30, 2022
AMTIO aka All My Tools in One

AMTIO AMTIO aka All My Tools In One. I plan to put a bunch of my tools in this one repo since im too lazy to make one big tool. Installation git clone

osintcat 3 Jul 29, 2021
Tensorboard plugin 3d with python

tensorboard-plugin-3d Overview In this example, we render a run selector dropdown component. When the user selects a run, it shows a preview of all sc

KitwareMedical 26 Nov 14, 2022
Игра реализована с помощью языке python3.9, библиотеки pygame

Игра в танки Игра реализована с помощью языке python3.9, библиотеки pygame. Игра имеет несколько уровней. Правила: есть танки, которые стреляют, есть

1 Jan 01, 2022
A Trace Explorer for Reverse Engineers

Tenet - A Trace Explorer for Reverse Engineers Overview Tenet is an IDA Pro plugin for exploring execution traces. The goal of this plugin is to provi

1k Jan 02, 2023
tetrados is a tool to generate a density of states using the linear tetrahedron method from a band structure.

tetrados tetrados is a tool to generate a density of states using the linear tetrahedron method from a band structure. Currently, only VASP calculatio

Alex Ganose 1 Dec 21, 2021
Use Fofa、shodan、zoomeye、360quake to collect information(e.g:domain,IP,CMS,OS)同时调用Fofa、shodan、zoomeye、360quake四个网络空间测绘API完成红队信息收集

Cyberspace Map API English/中文 Development fofaAPI Completed zoomeyeAPI shodanAPI regular 360 quakeAPI Completed Difficulty APIs uses different inputs

Xc1Ym 61 Oct 08, 2022
Uma moeda simples e segura!

SecCoin - Documentação A SecCoin foi criada com intuito de ser uma moeda segura, de fácil investimento e mineração. A Criptomoeda está na sua primeira

Sec-Coin Team 5 Dec 09, 2022
Multi-Process / Censorship Detection

Multi-Process / Censorship Detection

Baris Dincer 2 Dec 22, 2021
A comparison of mesh generators.

This repository creates meshes of the same domains with multiple mesh generators and compares the results.

Nico Schlömer 29 Dec 12, 2022
Aero is an open source airplane intelligence tool. Aero supports more than 13,000 airlines and 250 countries. Any flight worldwide at your fingertips.

Aero Aero supports more than 13,000 airlines and 250 countries. Any flight worldwide at your fingertips. Features Main : Flight lookup Aircraft lookup

Vickey 비키 4 Oct 27, 2021
Convert Beat Saber maps to Tesla light shows!

Tesla x Beat Saber - Light Show Converter Convert Beat Saber maps to Tesla light shows! This project requires FFMPEG and all packages from requirement

HLVM 20 Dec 21, 2022
mrcal is a generic toolkit to solve calibration and SFM-like problems originating at NASA/JPL

mrcal is a generic toolkit to solve calibration and SFM-like problems originating at NASA/JPL. Functionality related to these problems is exposed as a set of C and Python libraries and some commandli

Dima Kogan 102 Dec 23, 2022
Time tracking program that will format output to be easily put into Gitlab

time_tracker Time tracking program that will format output to be easily put into Gitlab. Feel free to branch and use it yourself! Getting Started Clon

Jake Strasler 2 Oct 13, 2022
Fast STL (ASCII & Binary) importer for Blender

blender-fast-stl-importer Fast STL (ASCII & Binary) importer for Blender based on https://en.wikipedia.org/wiki/STL_(file_format) Technical notes: flo

Iyad Ahmed 7 Apr 17, 2022
Open Source Management System for Botanic Garden Collections.

BotGard 3.0 Open Source Management System for Botanic Garden Collections built and maintained by netzkolchose.de in cooperation with the Botanical Gar

netzkolchose.de 1 Dec 15, 2021
End-to-End text sumarization, QAs generation using flask.

Help-Me-Read A web application created with Flask + BootStrap + HuggingFace 🤗 to generate summary and question-answer from given input text. It uses

Ankush Kuwar 12 Nov 13, 2022