Big Bird: Transformers for Longer Sequences

Overview

Big Bird: Transformers for Longer Sequences

Not an official Google product.

What is BigBird?

BigBird, is a sparse-attention based transformer which extends Transformer based models, such as BERT to much longer sequences. Moreover, BigBird comes along with a theoretical understanding of the capabilities of a complete transformer that the sparse model can handle.

As a consequence of the capability to handle longer context, BigBird drastically improves performance on various NLP tasks such as question answering and summarization.

More details and comparisons can be found in our presentation.

Citation

If you find this useful, please cite our NeurIPS 2020 paper:

@article{zaheer2020bigbird,
  title={Big bird: Transformers for longer sequences},
  author={Zaheer, Manzil and Guruganesh, Guru and Dubey, Kumar Avinava and Ainslie, Joshua and Alberti, Chris and Ontanon, Santiago and Pham, Philip and Ravula, Anirudh and Wang, Qifan and Yang, Li and others},
  journal={Advances in Neural Information Processing Systems},
  volume={33},
  year={2020}
}

Code

The most important directory is core. There are three main files in core.

  • attention.py: Contains BigBird linear attention mechanism
  • encoder.py: Contains the main long sequence encoder stack
  • modeling.py: Contains packaged BERT and seq2seq transformer models with BigBird attention

Colab/IPython Notebook

A quick fine-tuning demonstration for text classification is provided in imdb.ipynb

Create GCP Instance

Please create a project first and create an instance in a zone which has quota as follows

gcloud compute instances create \
  bigbird \
  --zone=europe-west4-a \
  --machine-type=n1-standard-16 \
  --boot-disk-size=50GB \
  --image-project=ml-images \
  --image-family=tf-2-3-1 \
  --maintenance-policy TERMINATE \
  --restart-on-failure \
  --scopes=cloud-platform

gcloud compute tpus create \
  bigbird \
  --zone=europe-west4-a \
  --accelerator-type=v3-32 \
  --version=2.3.1

gcloud compute ssh --zone "europe-west4-a" "bigbird"

For illustration we used instance name bigbird and zone europe-west4-a, but feel free to change them. More details about creating Google Cloud TPU can be found in online documentations.

Instalation and checkpoints

git clone https://github.com/google-research/bigbird.git
cd bigbird
pip3 install -e .

You can find pretrained and fine-tuned checkpoints in our Google Cloud Storage Bucket.

Optionally, you can download them using gsutil as

mkdir -p bigbird/ckpt
gsutil cp -r gs://bigbird-transformer/ bigbird/ckpt/

The storage bucket contains:

  • pretrained BERT model for base(bigbr_base) and large (bigbr_large) size. It correspond to BERT/RoBERTa-like encoder only models. Following original BERT and RoBERTa implementation they are transformers with post-normalization, i.e. layer norm is happening after the attention layer. However, following Rothe et al, we can use them partially in encoder-decoder fashion by coupling the encoder and decoder parameters, as illustrated in bigbird/summarization/roberta_base.sh launch script.
  • pretrained Pegasus Encoder-Decoder Transformer in large size(bigbp_large). Again following original implementation of Pegasus, they are transformers with pre-normalization. They have full set of separate encoder-decoder weights. Also for long document summarization datasets, we have converted Pegasus checkpoints (model.ckpt-0) for each dataset and also provided fine-tuned checkpoints (model.ckpt-300000) which works on longer documents.
  • fine-tuned tf.SavedModel for long document summarization which can be directly be used for prediction and evaluation as illustrated in the colab nootebook.

Running Classification

For quickly starting with BigBird, one can start by running the classification experiment code in classifier directory. To run the code simply execute

export GCP_PROJECT_NAME=bigbird-project  # Replace by your project name
export GCP_EXP_BUCKET=gs://bigbird-transformer-training/  # Replace
sh -x bigbird/classifier/base_size.sh

Using BigBird Encoder instead BERT/RoBERTa

To directly use the encoder instead of say BERT model, we can use the following code.

from bigbird.core import modeling

bigb_encoder = modeling.BertModel(...)

It can easily replace BERT's encoder.

Alternatively, one can also try playing with layers of BigBird encoder

from bigbird.core import encoder

only_layers = encoder.EncoderStack(...)

Understanding Flags & Config

All the flags and config are explained in core/flags.py. Here we explain some of the important config paramaters.

attention_type is used to select the type of attention we would use. Setting it to block_sparse runs the BigBird attention module.

flags.DEFINE_enum(
    "attention_type", "block_sparse",
    ["original_full", "simulated_sparse", "block_sparse"],
    "Selecting attention implementation. "
    "'original_full': full attention from original bert. "
    "'simulated_sparse': simulated sparse attention. "
    "'block_sparse': blocked implementation of sparse attention.")

block_size is used to define the size of blocks, whereas num_rand_blocks is used to set the number of random blocks. The code currently uses window size of 3 blocks and 2 global blocks. The current code only supports static tensors.

Important points to note:

  • Hidden dimension should be divisible by the number of heads.
  • Currently the code only handles tensors of static shape as it is primarily designed for TPUs which only works with statically shaped tensors.
  • For sequene length less than 1024, using original_full is advised as there is no benefit in using sparse BigBird attention.
An extensive UI tool built using new data scraped from BBC News

BBC-News-Analyzer An extensive UI tool built using new data scraped from BBC New

Antoreep Jana 1 Dec 31, 2021
A PyTorch implementation of VIOLET

VIOLET: End-to-End Video-Language Transformers with Masked Visual-token Modeling A PyTorch implementation of VIOLET Overview VIOLET is an implementati

Tsu-Jui Fu 119 Dec 30, 2022
Dust model dichotomous performance analysis

Dust-model-dichotomous-performance-analysis Using a collated dataset of 90,000 dust point source observations from 9 drylands studies from around the

1 Dec 17, 2021
Pytorch implementation of winner from VQA Chllange Workshop in CVPR'17

2017 VQA Challenge Winner (CVPR'17 Workshop) pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challeng

Mark Dong 166 Dec 11, 2022
Words_And_Phrases - Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours

Words_And_Phrases Just a repo for useful words and phrases that might come handy in some scenarios. Feel free to add yours Abbreviations Abbreviation

Subhadeep Mandal 1 Feb 01, 2022
📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation

Well-formed Limericks and Haikus with GPT2 📜 GPT-2 Rhyming Limerick and Haiku models using data augmentation In collaboration with Matthew Korahais &

Bardia Shahrestani 2 May 26, 2022
CATs: Semantic Correspondence with Transformers

CATs: Semantic Correspondence with Transformers For more information, check out the paper on [arXiv]. Training with different backbones and evaluation

74 Dec 10, 2021
Deduplication is the task to combine different representations of the same real world entity.

Deduplication is the task to combine different representations of the same real world entity. This package implements deduplication using active learning. Active learning allows for rapid training wi

63 Nov 17, 2022
🤗🖼️ HuggingPics: Fine-tune Vision Transformers for anything using images found on the web.

🤗 🖼️ HuggingPics Fine-tune Vision Transformers for anything using images found on the web. Check out the video below for a walkthrough of this proje

Nathan Raw 185 Dec 21, 2022
An open source library for deep learning end-to-end dialog systems and chatbots.

DeepPavlov is an open-source conversational AI library built on TensorFlow, Keras and PyTorch. DeepPavlov is designed for development of production re

Neural Networks and Deep Learning lab, MIPT 6k Dec 30, 2022
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

Nathan Cooper 2.3k Jan 01, 2023
Word Bot for JKLM Bomb Party

Word Bot for JKLM Bomb Party A bot for Bomb Party on https://www.jklm.fun (Only English) Requirements pynput pyperclip pyautogui Usage: Step 1: Run th

Nicolas 7 Oct 30, 2022
This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini!

About CappuccinoJs This converter will create the exact measure for your cappuccino recipe from the grandiose Rafaella Ballerini! Este conversor criar

Arthur Ottoni Ribeiro 48 Nov 15, 2022
LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating

LSTM based Sentiment Classification using Tensorflow - Amazon Reviews Rating (Dataset) The dataset is from Amazon Review Data (2018)

Immanuvel Prathap S 1 Jan 16, 2022
A text file containing 479k English words for all your dictionary/word-based projects e.g: auto-completion / autosuggestion

List Of English Words A text file containing over 466k English words. While searching for a list of english words (for an auto-complete tutorial) I fo

dwyl 8.5k Jan 03, 2023
BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

BERT has a Mouth, and It Must Speak: BERT as a Markov Random Field Language Model

303 Dec 17, 2022
TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

TEACh is a dataset of human-human interactive dialogues to complete tasks in a simulated household environment.

Alexa 98 Dec 09, 2022
A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework.

Unpacker Karton Service A modular Karton Framework service that unpacks common packers like UPX and others using the Qiling Framework. This project is

c3rb3ru5 45 Jan 05, 2023
Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

Code for the paper "A Simple but Tough-to-Beat Baseline for Sentence Embeddings".

1.1k Dec 27, 2022
Disfl-QA: A Benchmark Dataset for Understanding Disfluencies in Question Answering

Disfl-QA is a targeted dataset for contextual disfluencies in an information seeking setting, namely question answering over Wikipedia passages. Disfl-QA builds upon the SQuAD-v2 (Rajpurkar et al., 2

Google Research Datasets 52 Jun 21, 2022