HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales.

Related tags

Deep Learningheatnet
Overview

HeatNet

HeatNet is a python package that provides tools to build, train and evaluate neural networks designed to predict extreme heat wave events globally on daily to subseasonal timescales. It also includes preprocessing tools for atmospheric reanalysis data from the Copernicus Climate Data Store.

Dependencies

HeatNet relies on the DLWP-CS project, described in Weyn et al. (2020), and inherits all of its dependencies.

HeatNet requires installation of

  • TensorFlow >= 2.0, to build neural networks and data generators.
  • netCDF4, to read and write netCDF4 datasets.
  • xarray, to seamlessly manipulate datasets and data arrays.
  • dask, to support parallel xarray computations and streaming computation on datasets that don't fit into memory.
  • h5netcdf, which provides a flexible engine for xarray I/O operations.
  • NumPy for efficient array manipulation.
  • cdsapi, to enable downloading data from the Copernicus Climate Data Store.
  • TempestRemap, for mapping functions from latitude-longitude grids to cubed-sphere grids.

Modules

  • data: Classes and methods to download, preprocess and generate reanalysis data for model training.
  • model: Model architectures, custom losses and model estimators with descriptive metadata.
  • eval: Methods to evaluate model predictions, and compare against persistence or climatology.
  • test: Unit tests for classes and methods in the package.

License

HeatNet is distributed under the GNU General Public License Version 3, which means that any software modifying or relying on the HeatNet package must be distributed under the same license. Consult the full notice to understand your rights.

Installation guide

The installation of heatnet and its dependencies has been tested with the following configuration on both Linux and Mac personal workstations:

  • Create a new Python 3.7 environment using [conda] (https://www.anaconda.com/products/individual).

  • In the terminal, activate the environment,
    conda activate .

  • Install TensorFlow v2.3,
    pip install tensorflow==2.3

  • Install xarray,
    pip install xarray

  • Install netCDF4,
    conda install netCDF4

  • Install TempestRemap,
    conda install -c conda-forge tempest-remap

  • Install h5netcdf,
    conda install -c conda-forge h5netcdf

  • Install pygrib (Optional),
    pip install pygrib

  • Install cdsapi,
    pip install cdsapi

  • Install h5py v2.10.0,
    pip install h5py==2.10.0

  • Finally, install dask,
    pip install dask

  • The DLWP package is not currently published, so the source code must be downloaded from its GitHub repository. It is recommended to download this package in the same parent directory as HeatNet,
    git clone https://github.com/jweyn/DLWP-CS.git

  • If you want to plot results using Basemap, which is a slightly fragile (and deprecated) package, the following configuration is compatible with this setup:
    conda install basemap
    pip install -U matplotlib==3.2

Disclaimers

This is not an officially supported Google Product.

Owner
Google Research
Google Research
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
Machine Translation Implement By Bi-GRU And Transformer

Seq2Seq Translation Implement By Bidirectional GRU And Transformer In Pytorch Before You Run The Code You should download the data through the link be

He Wang 2 Oct 27, 2021
Simple Text-Generator with OpenAI gpt-2 Pytorch Implementation

GPT2-Pytorch with Text-Generator Better Language Models and Their Implications Our model, called GPT-2 (a successor to GPT), was trained simply to pre

Tae-Hwan Jung 775 Jan 08, 2023
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
MAVE: : A Product Dataset for Multi-source Attribute Value Extraction

The dataset contains 3 million attribute-value annotations across 1257 unique categories on 2.2 million cleaned Amazon product profiles. It is a large, multi-sourced, diverse dataset for product attr

Google Research Datasets 89 Jan 08, 2023
SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021)

SnapMix: Semantically Proportional Mixing for Augmenting Fine-grained Data (AAAI 2021) PyTorch implementation of SnapMix | paper Method Overview Cite

DavidHuang 126 Dec 30, 2022
Vikrant Deshpande 1 Nov 17, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squares.

W.I.P-Aim-Memory-Game A customisable game where you have to quickly click on black tiles in order of appearance while avoiding clicking on white squar

dE_soot 1 Dec 08, 2021
MQBench Quantization Aware Training with PyTorch

MQBench Quantization Aware Training with PyTorch I am using MQBench(Model Quantization Benchmark)(http://mqbench.tech/) to quantize the model for depl

Ling Zhang 29 Nov 18, 2022
This repository contains datasets and baselines for benchmarking Chinese text recognition.

Benchmarking-Chinese-Text-Recognition This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corres

FudanVI Lab 254 Dec 30, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
A smart Chat bot that can help to know about corona virus and Make prediction of corona using X-ray.

TRINIT_Hum_kuchh_nahi_karenge_ML01 Document Link https://github.com/Jatin-Goyal-552/TRINIT_Hum_kuchh_nahi_karenge_ML01/blob/main/hum_kuchh_nahi_kareng

JatinGoyal 1 Feb 03, 2022
Unofficial implementation of MUSIQ (Multi-Scale Image Quality Transformer)

MUSIQ: Multi-Scale Image Quality Transformer Unofficial pytorch implementation of the paper "MUSIQ: Multi-Scale Image Quality Transformer" (paper link

41 Jan 02, 2023
Multiview Dataset Toolkit

Multiview Dataset Toolkit Using multi-view cameras is a natural way to obtain a complete point cloud. However, there is to date only one multi-view 3D

11 Dec 22, 2022