RoboDesk A Multi-Task Reinforcement Learning Benchmark

Related tags

Deep Learningrobodesk
Overview

RoboDesk

PyPI

A Multi-Task Reinforcement Learning Benchmark

Robodesk Banner

If you find this open source release useful, please reference in your paper:

@misc{kannan2021robodesk,
  author = {Harini Kannan and Danijar Hafner and Chelsea Finn and Dumitru Erhan},
  title = {RoboDesk: A Multi-Task Reinforcement Learning Benchmark},
  year = {2021},
  howpublished = {\url{https://github.com/google-research/robodesk}},
}

Highlights

  • Diversity: RoboDesk includes 9 diverse tasks that test for a variety of different behaviors within the same environment, making it useful for evaluating transfer, multi-task learning, and global exploration.
  • Complexity: The high-dimensional image inputs contain objects of different shapes and colors, whose initial positions are randomized to avoid naive memorization and require learning algorithms to generalize.
  • Robustness: We carefully designed and tested RoboDesk to ensure fast and stable physics simulation. This avoids objects from intersecting, getting stuck, or quickly flying away, a common problem with some existing environments.
  • Lightweight: RoboDesk comes as a self-contained Python package with few dependencies. The source code is clean and pragmatic, making it a useful blueprint for creating new MuJoCo environments.

Training Agents

Installation: pip3 install -U robodesk

The environment follows the OpenAI Gym interface:

import robodesk

env = robodesk.RoboDesk(seed=0)
obs = env.reset()
assert obs.shape == (64, 64, 3)

done = False
while not done:
  action = env.action_space.sample()
  obs, reward, done, info = env.step(action)

Tasks

Robodesk Tasks

The behaviors above were learned using the Dreamer agent. These policies have been learned from scratch and only from pixels, not proprioceptive states.

Task Description
open_slide Push the sliding door all the way to the right, navigating around the other objects.
open_drawer Pull the dark brown drawer all the way open.
push_green Push the green button to turn the green light on.
stack_blocks Stack the upright blue block on top of the flat green block.
upright_block_off_table Push the blue upright block off the table.
flat_block_in_bin Push the green flat block into the blue bin.
flat_block_in_shelf Push the green flat block into the shelf, navigating around the other blocks.
lift_upright_block Grasp the blue upright block and lift it above the table.
lift_ball Grasp the magenta ball and lift it above the table.

Environment Details

Constructor

robodesk.RoboDesk(task='open_slide', reward='dense', action_repeat=1, episode_length=500, image_size=64)
Parameter Description
task Available tasks are open_slide, open_drawer, push_green, stack, upright_block_off_table, flat_block_in_bin, flat_block_in_shelf, lift_upright_block, lift_ball.
reward Available reward types are dense, sparse, success. Success gives only the first sparse reward during the episode, useful for computing success rates during evaluation.
action_repeat Reduces the control frequency by applying each action multiple times. This is faster than using an environment wrapper because only the needed images are rendered.
episode_length Time limit for the episode, can be None.
image_size Size of the image observations in pixels, used for both height and width.

Reward

All rewards are bound between 0 and 1. There are three types of rewards available:

  • Dense rewards are based on Euclidean distances between the objects and their target positions and can include additional terms, for example to encourage the arm to reach the object. These are the easiest rewards for learning.
  • Sparse rewards are either 0 or 1 based on whether the target object is in the target area or not, according to a fixed threshold. Learning from sparse rewards is more challenging.
  • Success rewards are equivalent to the sparse rewards, except that only the first reward is given during each episode. As a result, an episode return of 0 means failure and 1 means sucess at the task. This should only be used during evaluation.

Termination

Episodes end after 500 time steps by default. There are no early terminations.

Observation Space

Each observation is a dictionary that contains the current image, as well as additional information. For the standard benchmark, only the image should be used for learning. The observation dictionary contains the following keys:

Key Space
image Box(0, 255, (64, 64, 3), np.uint8)
qpos_robot Box(-np.inf, np.inf, (9,), np.float32)
qvel_robot Box(-np.inf, np.inf, (9,), np.float32)
qpos_objects Box(-np.inf, np.inf, (26,), np.float32)
qvel_objects Box(-np.inf, np.inf, (26,), np.float32)
end_effector Box(-np.inf, np.inf, (3,), np.float32)

Action Space

RoboDesk uses end effector control with a simple bounded action space:

Box(-1, 1, (5,), np.float32)

Acknowledgements

We thank Ben Eysenbach and Debidatta Dwibedi for their helpful feedback.

Our benchmark builds upon previously open-sourced work. We build upon the desk XMLs first introduced in [1], the Franka XMLs open-sourced in [2], and the Franka meshes open-sourced in [3].

Questions

Please open an issue on Github.

Disclaimer: This is not an official Google product.

Owner
Google Research
Google Research
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
Contrastive Loss Gradient Attack (CLGA)

Contrastive Loss Gradient Attack (CLGA) Official implementation of Unsupervised Graph Poisoning Attack via Contrastive Loss Back-propagation, WWW22 Bu

12 Dec 23, 2022
Location-Sensitive Visual Recognition with Cross-IOU Loss

The trained models are temporarily unavailable, but you can train the code using reasonable computational resource. Location-Sensitive Visual Recognit

Kaiwen Duan 146 Dec 25, 2022
Dahua Camera and Doorbell Home Assistant Integration

Home Assistant Dahua Integration The Dahua Home Assistant integration allows you to integrate your Dahua cameras and doorbells in Home Assistant. It's

Ronnie 216 Dec 26, 2022
A scikit-learn-compatible module for estimating prediction intervals.

|Anaconda|_ MAPIE - Model Agnostic Prediction Interval Estimator MAPIE allows you to easily estimate prediction intervals using your favourite sklearn

SimAI 584 Dec 27, 2022
Official PyTorch Implementation of Mask-aware IoU and maYOLACT Detector [BMVC2021]

The official implementation of Mask-aware IoU and maYOLACT detector. Our implementation is based on mmdetection. Mask-aware IoU for Anchor Assignment

Kemal Oksuz 46 Sep 29, 2022
Differentiable architecture search for convolutional and recurrent networks

Differentiable Architecture Search Code accompanying the paper DARTS: Differentiable Architecture Search Hanxiao Liu, Karen Simonyan, Yiming Yang. arX

Hanxiao Liu 3.7k Jan 09, 2023
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
PyTorch implementation of Deformable Convolution

Deformable Convolutional Networks in PyTorch This repo is an implementation of Deformable Convolution. Ported from author's MXNet implementation. Buil

411 Dec 16, 2022
Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model.

Exposure: A White-Box Photo Post-Processing Framework ACM Transactions on Graphics (presented at SIGGRAPH 2018) Yuanming Hu1,2, Hao He1,2, Chenxi Xu1,

Yuanming Hu 719 Dec 29, 2022
A hybrid framework (neural mass model + ML) for SC-to-FC prediction

The current workflow simulates brain functional connectivity (FC) from structural connectivity (SC) with a neural mass model. Gradient descent is applied to optimize the parameters in the neural mass

Yilin Liu 1 Jan 26, 2022
Codes for paper "KNAS: Green Neural Architecture Search"

KNAS Codes for paper "KNAS: Green Neural Architecture Search" KNAS is a green (energy-efficient) Neural Architecture Search (NAS) approach. It contain

90 Dec 22, 2022
Pytorch implementation for "Density-aware Chamfer Distance as a Comprehensive Metric for Point Cloud Completion" (NeurIPS 2021)

Density-aware Chamfer Distance This repository contains the official PyTorch implementation of our paper: Density-aware Chamfer Distance as a Comprehe

Tong WU 93 Dec 15, 2022
Hyperparameter Optimization for TensorFlow, Keras and PyTorch

Hyperparameter Optimization for Keras Talos • Key Features • Examples • Install • Support • Docs • Issues • License • Download Talos radically changes

Autonomio 1.6k Dec 15, 2022
A flexible submap-based framework towards spatio-temporally consistent volumetric mapping and scene understanding.

Panoptic Mapping This package contains panoptic_mapping, a general framework for semantic volumetric mapping. We provide, among other, a submap-based

ETHZ ASL 194 Dec 20, 2022
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
Pyramid Scene Parsing Network, CVPR2017.

Pyramid Scene Parsing Network by Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang Wang, Jiaya Jia, details are in project page. Introduction This

Hengshuang Zhao 1.5k Jan 05, 2023
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages

AfriBERTa: Exploring the Viability of Pretrained Multilingual Language Models for Low-resourced Languages This repository contains the code for the pa

Kelechi 40 Nov 24, 2022
Finite difference solution of 2D Poisson equation. Can handle Dirichlet, Neumann and mixed boundary conditions.

Poisson-solver-2D Finite difference solution of 2D Poisson equation Current version can handle Dirichlet, Neumann, and mixed (combination of Dirichlet

Mohammad Asif Zaman 34 Dec 23, 2022