Cross-Modal Contrastive Learning for Text-to-Image Generation

Overview

Cross-Modal Contrastive Learning for Text-to-Image Generation

This repository hosts the open source JAX implementation of XMC-GAN.

Setup instructions

Environment

Set up virtualenv, and install required libraries:

virtualenv venv
source venv/bin/activate

Add the XMC-GAN library to PYTHONPATH:

export PYTHONPATH=$PYTHONPATH:/home/path/to/xmcgan/root/

JAX Installation

Note: Please follow the official JAX instructions for installing a GPU compatible version of JAX.

Other Dependencies

After installing JAX, install the remaining dependencies with:

pip install -r requirements.txt

Preprocess COCO-2014

To create the training and eval data, first start a directory. By default, the training scripts expect to save results in data/ in the base directory.

mkdir data/

The TFRecords required for training and validation on COCO-2014 can be created by running a preprocessing script over the TFDS coco_captions dataset:

python preprocess_data.py

This may take a while to complete, as it runs a pretrained BERT model over the captions and stores the embeddings. With a GPU, it runs in about 2.5 hours for train, and 1 hour for validation. Once it is done, the train and validation tfrecords files will be saved in the data/ directory. The train files require around 58G of disk space, and the validation requires 29G.

Note: If you run into an error related to TensorFlow gfile, one workaround is to edit site-packages/bert/tokenization.py and change tf.gfile.GFile to tf.io.gfile.GFile. For more details, refer to the following link.

If you run into a tensorflow.python.framework.errors_impl.ResourceExhaustedError about having too many open files, you may have to increase the machine's open file limits. To do so, open the limit configuration file for editing:

vi /etc/security/limits.conf

and append the following lines to the end of the file:

*         hard    nofile      500000
*         soft    nofile      500000
root      hard    nofile      500000
root      soft    nofile      500000

You may have to adjust the limit values depending on your machine. You will need to logout and login to your machine for these values to take effect.

Download Pretrained ResNet

To train XMC-GAN, we need a network pretrained on ImageNet to extract features. For our purposes, we train a ResNet-50 network for this. To download the weights, run:

gsutil cp gs://gresearch/xmcgan/resnet_pretrained.npy data/

If you would like to pretrain your own network on ImageNet, please refer to the official Flax ImageNet example.

Training

Start a training run, by first editing train.sh to specify an appropriate work directory. By default, the script assumes that 8 GPUs are available, and runs training on the first 7 GPUs, while test.sh assumes testing will run on the last GPU. After configuring the training job, start an experiment by running it on bash:

mkdir exp
bash train.sh exp_name &> train.txt

Checkpoints and Tensorboard logs will be saved in /path/to/exp/exp_name. By default, the configs/coco_xmc.py config is used, which runs an experiment for 128px images. This is able to accommodate a batch size of 8 on each GPU, and achieves an FID of around 10.5 - 11.0 with the EMA weights. To reproduce the full results on 256px images in our paper, the full model needs to be run using a 32-core Pod slice of Google Cloud TPU v3 devices.

Evaluation

To run an evaluation job, update test.sh with the correct settings used in the training script. Then, execute

bash test.sh exp_name &> eval.txt

to start an evaluation job. All checkpoints in workdir will be evaluated for FID and Inception Score. If you can spare the GPUs, you can also run train.sh and test.sh in parallel, which will continuously evaluate new checkpoints saved into the work directory. Scores will be written to Tensorboard and output to eval.txt.

Tensorboard

To start a Tensorboard for monitoring training progress, run:

tensorboard --logdir /path/to/exp/exp_name

Citation

If you find this work useful, please consider citing:

@inproceedings{zhang2021cross,
  title={Cross-Modal Contrastive Learning for Text-to-Image Generation},
  author={Zhang, Han and Koh, Jing Yu and Baldridge, Jason and Lee, Honglak and Yang, Yinfei},
  journal={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2021}
}

Disclaimer

Not an official Google product.

Owner
Google Research
Google Research
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
GLM (General Language Model)

GLM GLM is a General Language Model pretrained with an autoregressive blank-filling objective and can be finetuned on various natural language underst

THUDM 421 Jan 04, 2023
YolactEdge: Real-time Instance Segmentation on the Edge

YolactEdge, the first competitive instance segmentation approach that runs on small edge devices at real-time speeds. Specifically, YolactEdge runs at up to 30.8 FPS on a Jetson AGX Xavier (and 172.7

Haotian Liu 1.1k Jan 06, 2023
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
Multi-modal Content Creation Model Training Infrastructure including the FACT model (AI Choreographer) implementation.

AI Choreographer: Music Conditioned 3D Dance Generation with AIST++ [ICCV-2021]. Overview This package contains the model implementation and training

Google Research 365 Dec 30, 2022
AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

AMTML-KD: Adaptive Multi-teacher Multi-level Knowledge Distillation

Frank Liu 26 Oct 13, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
This library provides an abstraction to perform Model Versioning using Weight & Biases.

Description This library provides an abstraction to perform Model Versioning using Weight & Biases. Features Version a new trained model Promote a mod

Hector Lopez Almazan 2 Jan 28, 2022
StellarGraph - Machine Learning on Graphs

StellarGraph Machine Learning Library StellarGraph is a Python library for machine learning on graphs and networks. Table of Contents Introduction Get

S T E L L A R 2.6k Jan 05, 2023
Unofficial Implementation of MLP-Mixer in TensorFlow

mlp-mixer-tf Unofficial Implementation of MLP-Mixer [abs, pdf] in TensorFlow. Note: This project may have some bugs in it. I'm still learning how to i

Rishabh Anand 24 Mar 23, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
Finding an Unsupervised Image Segmenter in each of your Deep Generative Models

Finding an Unsupervised Image Segmenter in each of your Deep Generative Models Description Recent research has shown that numerous human-interpretable

Luke Melas-Kyriazi 61 Oct 17, 2022
A curated list of awesome game datasets, and tools to artificial intelligence in games

🎮 Awesome Game Datasets In computer science, Artificial Intelligence (AI) is intelligence demonstrated by machines. Its definition, AI research as th

Leonardo Mauro 454 Jan 03, 2023
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
[ICCV 2021] Deep Hough Voting for Robust Global Registration

Deep Hough Voting for Robust Global Registration, ICCV, 2021 Project Page | Paper | Video Deep Hough Voting for Robust Global Registration Junha Lee1,

Junha Lee 10 Dec 02, 2022
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022