This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

Overview

PyTorch Infer Utils

This package proposes simplified exporting pytorch models to ONNX and TensorRT, and also gives some base interface for model inference.

To install

git clone https://github.com/gorodnitskiy/pytorch_infer_utils.git
pip install /path/to/pytorch_infer_utils/

Export PyTorch model to ONNX

  • Check model for denormal weights to achieve better performance. Use load_weights_rounded_model func to load model with weights rounding:
    from pytorch_infer_utils import load_weights_rounded_model
    
    model = ModelClass()
    load_weights_rounded_model(
        model,
        "/path/to/model_state_dict",
        map_location=map_location
    )
    
  • Use ONNXExporter.torch2onnx method to export pytorch model to ONNX:
    from pytorch_infer_utils import ONNXExporter
    
    model = ModelClass()
    model.load_state_dict(
        torch.load("/path/to/model_state_dict", map_location=map_location)
    )
    model.eval()
    
    exporter = ONNXExporter()
    input_shapes = [-1, 3, 224, 224] # -1 means that is dynamic shape
    exporter.torch2onnx(model, "/path/to/model.onnx", input_shapes)
    
  • Use ONNXExporter.optimize_onnx method to optimize ONNX via onnxoptimizer:
    from pytorch_infer_utils import ONNXExporter
    
    exporter = ONNXExporter()
    exporter.optimize_onnx("/path/to/model.onnx", "/path/to/optimized_model.onnx")
    
  • Use ONNXExporter.optimize_onnx_sim method to optimize ONNX via onnx-simplifier. Be careful with onnx-simplifier not to lose dynamic shapes.
    from pytorch_infer_utils import ONNXExporter
    
    exporter = ONNXExporter()
    exporter.optimize_onnx_sim("/path/to/model.onnx", "/path/to/optimized_model.onnx")
    
  • Also, a method combined the above methods is available ONNXExporter.torch2optimized_onnx:
    from pytorch_infer_utils import ONNXExporter
    
    model = ModelClass()
    model.load_state_dict(
        torch.load("/path/to/model_state_dict", map_location=map_location)
    )
    model.eval()
    
    exporter = ONNXExporter()
    input_shapes = [-1, 3, -1, -1] # -1 means that is dynamic shape
    exporter.torch2optimized_onnx(model, "/path/to/model.onnx", input_shapes)
    
  • Other params that can be used in class initialization:
    • default_shapes: default shapes if dimension is dynamic, default = [1, 3, 224, 224]
    • onnx_export_params:
      • export_params: store the trained parameter weights inside the model file, default = True
      • do_constant_folding: whether to execute constant folding for optimization, default = True
      • input_names: the model's input names, default = ["input"]
      • output_names: the model's output names, default = ["output"]
      • opset_version: the ONNX version to export the model to, default = 11
    • onnx_optimize_params:
      • fixed_point: use fixed point, default = False
      • passes: optimization passes, default = [ "eliminate_deadend", "eliminate_duplicate_initializer", "eliminate_identity", "eliminate_if_with_const_cond", "eliminate_nop_cast", "eliminate_nop_dropout", "eliminate_nop_flatten", "eliminate_nop_monotone_argmax", "eliminate_nop_pad", "eliminate_nop_transpose", "eliminate_unused_initializer", "extract_constant_to_initializer", "fuse_add_bias_into_conv", "fuse_bn_into_conv", "fuse_consecutive_concats", "fuse_consecutive_log_softmax", "fuse_consecutive_reduce_unsqueeze", "fuse_consecutive_squeezes", "fuse_consecutive_transposes", "fuse_matmul_add_bias_into_gemm", "fuse_pad_into_conv", "fuse_transpose_into_gemm", "lift_lexical_references", "nop" ]

Export ONNX to TensorRT

  • Check TensorRT health via check_tensorrt_health func
  • Use TRTEngineBuilder.build_engine method to export ONNX to TensorRT:
    from pytorch_infer_utils import TRTEngineBuilder
    
    exporter = TRTEngineBuilder()
    # get engine by itself
    engine = exporter.build_engine("/path/to/model.onnx")
    # or save engine to /path/to/model.trt
    exporter.build_engine("/path/to/model.onnx", engine_path="/path/to/model.trt")
    
  • fp16_mode is available:
    from pytorch_infer_utils import TRTEngineBuilder
    
    exporter = TRTEngineBuilder()
    engine = exporter.build_engine("/path/to/model.onnx", fp16_mode=True)
    
  • int8_mode is available. It requires calibration_set of images as List[Any], load_image_func - func to correctly read and process images, max_image_shape - max image size as [C, H, W] to allocate correct size of memory:
    from pytorch_infer_utils import TRTEngineBuilder
    
    exporter = TRTEngineBuilder()
    engine = exporter.build_engine(
        "/path/to/model.onnx",
        int8_mode=True,
        calibration_set=calibration_set,
        max_image_shape=max_image_shape,
        load_image_func=load_image_func,
    )
    
  • Also, additional params for builder config builder.create_builder_config can be put to kwargs.
  • Other params that can be used in class initialization:
    • opt_shape_dict: optimal shapes, default = {'input': [[1, 3, 224, 224], [1, 3, 224, 224], [1, 3, 224, 224]]}
    • max_workspace_size: max workspace size, default = [1, 30]
    • stream_batch_size: batch size for forward network during transferring to int8, default = 100
    • cache_file: int8_mode cache filename, default = "model.trt.int8calibration"

Inference via onnxruntime on CPU and onnx_tensort on GPU

  • Base class ONNXWrapper __init__ has the structure as below:
    def __init__(
        self,
        onnx_path: str,
        gpu_device_id: Optional[int] = None,
        intra_op_num_threads: Optional[int] = 0,
        inter_op_num_threads: Optional[int] = 0,
    ) -> None:
        """
        :param onnx_path: onnx-file path, required
        :param gpu_device_id: gpu device id to use, default = 0
        :param intra_op_num_threads: ort_session_options.intra_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :param inter_op_num_threads: ort_session_options.inter_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :type onnx_path: str
        :type gpu_device_id: int
        :type intra_op_num_threads: int
        :type inter_op_num_threads: int
        """
        if gpu_device_id is None:
            import onnxruntime
    
            self.is_using_tensorrt = False
            ort_session_options = onnxruntime.SessionOptions()
            ort_session_options.intra_op_num_threads = intra_op_num_threads
            ort_session_options.inter_op_num_threads = inter_op_num_threads
            self.ort_session = onnxruntime.InferenceSession(
                onnx_path, ort_session_options
            )
    
        else:
            import onnx
            import onnx_tensorrt.backend as backend
    
            self.is_using_tensorrt = True
            model_proto = onnx.load(onnx_path)
            for gr_input in model_proto.graph.input:
                gr_input.type.tensor_type.shape.dim[0].dim_value = 1
    
            self.engine = backend.prepare(
                model_proto, device=f"CUDA:{gpu_device_id}"
            )
    
  • ONNXWrapper.run method assumes the use of such a structure:
    img = self._process_img_(img)
    if self.is_using_tensorrt:
        preds = self.engine.run(img)
    else:
        ort_inputs = {self.ort_session.get_inputs()[0].name: img}
        preds = self.ort_session.run(None, ort_inputs)
    
    preds = self._process_preds_(preds)
    

Inference via onnxruntime on CPU and TensorRT on GPU

  • Base class TRTWrapper __init__ has the structure as below:
    def __init__(
        self,
        onnx_path: Optional[str] = None,
        trt_path: Optional[str] = None,
        gpu_device_id: Optional[int] = None,
        intra_op_num_threads: Optional[int] = 0,
        inter_op_num_threads: Optional[int] = 0,
        fp16_mode: bool = False,
    ) -> None:
        """
        :param onnx_path: onnx-file path, default = None
        :param trt_path: onnx-file path, default = None
        :param gpu_device_id: gpu device id to use, default = 0
        :param intra_op_num_threads: ort_session_options.intra_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :param inter_op_num_threads: ort_session_options.inter_op_num_threads,
            to let onnxruntime choose by itself is required 0, default = 0
        :param fp16_mode: use fp16_mode if class initializes only with
            onnx_path on GPU, default = False
        :type onnx_path: str
        :type trt_path: str
        :type gpu_device_id: int
        :type intra_op_num_threads: int
        :type inter_op_num_threads: int
        :type fp16_mode: bool
        """
        if gpu_device_id is None:
            import onnxruntime
    
            self.is_using_tensorrt = False
            ort_session_options = onnxruntime.SessionOptions()
            ort_session_options.intra_op_num_threads = intra_op_num_threads
            ort_session_options.inter_op_num_threads = inter_op_num_threads
            self.ort_session = onnxruntime.InferenceSession(
                onnx_path, ort_session_options
            )
    
        else:
            self.is_using_tensorrt = True
            if trt_path is None:
                builder = TRTEngineBuilder()
                trt_path = builder.build_engine(onnx_path, fp16_mode=fp16_mode)
    
            self.trt_session = TRTRunWrapper(trt_path)
    
  • TRTWrapper.run method assumes the use of such a structure:
    img = self._process_img_(img)
    if self.is_using_tensorrt:
        preds = self.trt_session.run(img)
    else:
        ort_inputs = {self.ort_session.get_inputs()[0].name: img}
        preds = self.ort_session.run(None, ort_inputs)
    
    preds = self._process_preds_(preds)
    

Environment

TensorRT

  • TensorRT installing guide is here
  • Required CUDA-Runtime, CUDA-ToolKit
  • Also, required additional python packages not included to setup.cfg (it depends upon CUDA environment version):
    • pycuda
    • nvidia-tensorrt
    • nvidia-pyindex

onnx_tensorrt

  • onnx_tensorrt requires cuda-runtime and tensorrt.
  • To install:
    git clone --depth 1 --branch 21.02 https://github.com/onnx/onnx-tensorrt.git
    cd onnx-tensorrt
    cp -r onnx_tensorrt /usr/local/lib/python3.8/dist-packages
    cd ..
    rm -rf onnx-tensorrt
    
Owner
Alex Gorodnitskiy
Computer Vision Engineer 🤖
Alex Gorodnitskiy
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 02, 2023
Official git repo for the CHIRP project

CHIRP Project This is the official git repository for the CHIRP project. Pull requests are accepted here, but for the moment, the main repository is s

Dan Smith 77 Jan 08, 2023
Official repository of the paper "A Variational Approximation for Analyzing the Dynamics of Panel Data". Mixed Effect Neural ODE. UAI 2021.

Official repository of the paper (UAI 2021) "A Variational Approximation for Analyzing the Dynamics of Panel Data", Mixed Effect Neural ODE. Panel dat

Jurijs Nazarovs 7 Nov 26, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
Road Crack Detection Using Deep Learning Methods

Road-Crack-Detection-Using-Deep-Learning-Methods This is my Diploma Thesis ¨Road Crack Detection Using Deep Learning Methods¨ under the supervision of

Aggelos Katsaliros 3 May 03, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Tom-the-AI - A compound artificial intelligence software for Linux systems.

Tom the AI (version 0.82) WARNING: This software is not yet ready to use, I'm still setting up the GitHub repository. Should be ready in a few days. T

2 Apr 28, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
A real-time motion capture system that estimates poses and global translations using only 6 inertial measurement units

TransPose Code for our SIGGRAPH 2021 paper "TransPose: Real-time 3D Human Translation and Pose Estimation with Six Inertial Sensors". This repository

Xinyu Yi 261 Dec 31, 2022
Black box hyperparameter optimization made easy.

BBopt BBopt aims to provide the easiest hyperparameter optimization you'll ever do. Think of BBopt like Keras (back when Theano was still a thing) for

Evan Hubinger 70 Nov 03, 2022
PyTorch implementation of: Michieli U. and Zanuttigh P., "Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations", CVPR 2021.

Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations This is the official PyTorch implementation

Multimedia Technology and Telecommunication Lab 42 Nov 09, 2022
Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
torchbearer: A model fitting library for PyTorch

Note: We're moving to PyTorch Lightning! Read about the move here. From the end of February, torchbearer will no longer be actively maintained. We'll

631 Jan 04, 2023
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
Modified fork of Xuebin Qin's U-2-Net Repository. Used for demonstration purposes.

U^2-Net (U square net) Modified version of U2Net used for demonstation purposes. Paper: U^2-Net: Going Deeper with Nested U-Structure for Salient Obje

Shreyas Bhat Kera 13 Aug 28, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
A sequence of Jupyter notebooks featuring the 12 Steps to Navier-Stokes

CFD Python Please cite as: Barba, Lorena A., and Forsyth, Gilbert F. (2018). CFD Python: the 12 steps to Navier-Stokes equations. Journal of Open Sour

Barba group 2.6k Dec 30, 2022
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022