Demonstrates iterative FGSM on Apple's NeuralHash model.

Overview

apple-neuralhash-attack

Demonstrates iterative FGSM on Apple's NeuralHash model.

TL;DR: It is possible to apply noise to CSAM images and make them look like regular images to the NeuralHash model. The noise does degrade the CSAM image (see samples). But this was achieved without tuning learning rate and there are more refined attacks available too.

Example

Here is an example that uses a Grumpy Cat image in place of a CSAM image. The attack adds noise to the Grumpy Cat image and makes the model see it as a Doge image.

As a result, both of these images have the same neural hash of 11d9b097ac960bd2c6c131fa, computed via ONNX Runtime, with the script by AsuharietYgvar/AppleNeuralHash2ONNX.

doge adv_cat

More generally, because the attack optimizes the model output, the adversarial image will generate largely the same hash as the good image, regardless of the seed.

Instructions

Get ONNX model

Obtain the ONNX model from AsuharietYgvar/AppleNeuralHash2ONNX. You should have a path to a model.onnx file.

Convert ONNX model to TF model

Then convert the ONNX model to a Tensorflow model by first installing the onnx_tf library via onnx/onnx-tensorflow. Then run the following:

python3 convert.py -o /path/to/model.onnx

This will save a Tensorflow model to the current directory as model.pb.

Run adversarial attack

Finally, run the adversarial attack with the following:

python3 nnhash_attack.py --seed /path/to/neuralhash_128x96_seed1.dat

Other arguments:

-m           Path to Tensorflow model (defaults to "model.pb")
--good       Path to good image (defaults to "samples/doge.png")
--bad        Path to bad image (defaults to "samples/grumpy_cat.png")
--lr         Learning rate (defaults to 3e-1)
--save_every Save every interval (defaults to 2000)

This will save generated images to samples/iteration_{i}.png.

Note that the hash similarity may decrease initially before increasing again.

Also, for the sample images and with default parameters, the hash was identical after 28000 iterations.

Terminal output:

# Some Tensorflow boilerplate...
Iteration #2000: L2-loss=134688, Hash Similarity=0.2916666666666667
Good Hash: 11d9b097ac960bd2c6c131fa
Bad Hash : 20f1089728150af2ca2de49a
Saving image to samples/iteration2000.png...
Iteration #4000: L2-loss=32605, Hash Similarity=0.41666666666666677
Good Hash: 11d9b097ac960bd2c6c131fa
Bad Hash : 20d9b097ac170ad2cfe170da
Saving image to samples/iteration4000.png...
Iteration #6000: L2-loss=18547, Hash Similarity=0.4166666666666667
Good Hash: 11d9b097ac960bd2c6c131fa
Bad Hash : 20d9b097ac170ad2c7c1f0de
Saving image to samples/iteration6000.png...

Credit

Owner
Lim Swee Kiat
Lim Swee Kiat
Neural Contours: Learning to Draw Lines from 3D Shapes (CVPR2020)

Neural Contours: Learning to Draw Lines from 3D Shapes This repository contains the PyTorch implementation for CVPR 2020 Paper "Neural Contours: Learn

93 Dec 16, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
A High-Performance Distributed Library for Large-Scale Bundle Adjustment

MegBA: A High-Performance and Distributed Library for Large-Scale Bundle Adjustment This repo contains an official implementation of MegBA. MegBA is a

旷视研究院 3D 组 336 Dec 27, 2022
tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series classification, regression and forecasting.

Time series Timeseries Deep Learning Pytorch fastai - State-of-the-art Deep Learning with Time Series and Sequences in Pytorch / fastai

timeseriesAI 2.8k Jan 08, 2023
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation".

Dual-Contrastive-Learning A PyTorch implementation for our paper "Dual Contrastive Learning: Text Classification via Label-Aware Data Augmentation". Y

hoshi-hiyouga 85 Dec 26, 2022
Small little script to scrape, parse and check for active tor nodes. Can be used as proxies.

TorScrape TorScrape is a small but useful script made in python that scrapes a website for active tor nodes, parse the html and then save the nodes in

5 Dec 04, 2022
N-Person-Check-Checker-Splitter - A calculator app use to divide checks

N-Person-Check-Checker-Splitter This is my from-scratch programmed calculator ap

2 Feb 15, 2022
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
Bio-Computing Platform Featuring Large-Scale Representation Learning and Multi-Task Deep Learning “螺旋桨”生物计算工具集

English | 简体中文 Latest News 2021.10.25 Paper "Docking-based Virtual Screening with Multi-Task Learning" is accepted by BIBM 2021. 2021.07.29 PaddleHeli

633 Jan 04, 2023
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
PartImageNet is a large, high-quality dataset with part segmentation annotations

PartImageNet: A Large, High-Quality Dataset of Parts We will release our dataset and scripts soon after cleaning and approval. Introduction PartImageN

Ju He 77 Nov 30, 2022
Continuous Query Decomposition for Complex Query Answering in Incomplete Knowledge Graphs

Continuous Query Decomposition This repository contains the official implementation for our ICLR 2021 (Oral) paper, Complex Query Answering with Neura

UCL Natural Language Processing 71 Dec 29, 2022
Implementation of E(n)-Transformer, which extends the ideas of Welling's E(n)-Equivariant Graph Neural Network to attention

E(n)-Equivariant Transformer (wip) Implementation of E(n)-Equivariant Transformer, which extends the ideas from Welling's E(n)-Equivariant G

Phil Wang 132 Jan 02, 2023
Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer

Two-Stage Peer-Regularized Feature Recombination for Arbitrary Image Style Transfer Paper on arXiv Public PyTorch implementation of two-stage peer-reg

NNAISENSE 38 Oct 14, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
Semi-supervised Learning for Sentiment Analysis

Neural-Semi-supervised-Learning-for-Text-Classification-Under-Large-Scale-Pretraining Code, models and Datasets for《Neural Semi-supervised Learning fo

47 Jan 01, 2023
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
This repo contains research materials released by members of the Google Brain team in Tokyo.

Brain Tokyo Workshop 🧠 🗼 This repo contains research materials released by members of the Google Brain team in Tokyo. Past Projects Weight Agnostic

Google 1.2k Jan 02, 2023