Re-TACRED: Addressing Shortcomings of the TACRED Dataset

Overview

Re-TACRED

Re-TACRED: Addressing Shortcomings of the TACRED Dataset
George Stoica, Emmanouil Antonios Platanios, and Barnabás Póczos
In Proceedings of the Thirty-fifth AAAI Conference on Artificial Intelligence 2021

Primary Contact: George Stoica. As of Jan 2021, I am no longer at CMU, and the cs.cmu.edu email may no longer work. Please contact me instead at: [email protected].

Changelog

  • 1.0 - Initial dataset release: Data consisted of 105,206 total instances spread across 40 relations.
  • 1.1 - Updated dataset release: After extensive discussion, we have elected to prune Re-TACRED by ~ 14K instances. The new dataset has 91,467 instances, spread across 40 relations. Pruned data consisted of a mixture of messily segmented entities (and corresponding types), or sentences whose relations were ambigious. While this version is smaller, it is cleaner, and better defined.

This repository contains all relevant resources for using Re-TACRED, a new relation extraction dataset.

For details on this work please check out our:

Below we describe the contents of the four repository directories by name.

Re-TACRED

This directory contains version 1.1 of our revised TACRED dataset patches for each split. Due to licensing restrictions, we cannot provide the complete dataset. However, following Alt, Gabryszak, and Hennig (2020), our patch consists of json files mapping TACRED instances by their id to our revised labels.

The original TACRED dataset is available for download from the LDC here. It is free for members, or $25 for non-members.

Applying the patch is simple and only requires replacing each TACRED instance (where applicable) with our revised relation. For convenience, we provide a script for this named apply_patch.py in the Re-TACRED directory. In the script, you only need to replace

tacred_dir = None
save_dir = None

With the path to your TACRED dataset save directory, and the directory where you wish to save the patched data to respectively.

PA-LSTM, C-GCN & SpanBERT

We base our experiments off of the open-source model repositories of:

However, it is not possible to simply pass Re-TACRED to each model repository because each is hardcoded for TACRED. Thus, we must modify certain files to make each model Re-TACRED compatible. To make it as easy as possible, we provide all our altered files in each named model directory (e.g., the provided PA-LSTM directory). All that needs to be done is to replace the corresponding file in our provided directory with the corresponding file in the original model repository. For instance, you may replace SpanBERT's "run_tacred.py" file with our "run_tacred.py" file. Running experiments is equivalent to how it is performed in the original model repositories.

Note that our files also contain certain "quality of life" changes that make running each model more convenient for us. Examples include adding and tracking the test split while training (as opposed to only the dev set).

Owner
George Stoica
PhD ML @ Georgia Tech
George Stoica
Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation

Reviatalizing Optimization for 3D Human Pose and Shape Estimation: A Sparse Constrained Formulation This is the implementation of the approach describ

Taosha Fan 47 Nov 15, 2022
Pytorch implementation of CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generation"

MUST-GAN Code | paper The Pytorch implementation of our CVPR2021 paper "MUST-GAN: Multi-level Statistics Transfer for Self-driven Person Image Generat

TianxiangMa 46 Dec 26, 2022
CVPR 2020 oral paper: Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax.

Overcoming Classifier Imbalance for Long-tail Object Detection with Balanced Group Softmax ⚠️ Latest: Current repo is a complete version. But we delet

FishYuLi 341 Dec 23, 2022
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree

This is a Python implementation of cover trees, a data structure for finding nearest neighbors in a general metric space (e.g., a 3D box with periodic

Patrick Varilly 28 Nov 25, 2022
Job Assignment System by Real-time Emotion Detection

Emotion-Detection Job Assignment System by Real-time Emotion Detection Emotion is the essential role of facial expression and it could provide a lot o

1 Feb 08, 2022
DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors

DeepMoCap: Deep Optical Motion Capture using multiple Depth Sensors and Retro-reflectors By Anargyros Chatzitofis, Dimitris Zarpalas, Stefanos Kollias

tofis 24 Oct 08, 2022
Multi-Joint dynamics with Contact. A general purpose physics simulator.

MuJoCo Physics MuJoCo stands for Multi-Joint dynamics with Contact. It is a general purpose physics engine that aims to facilitate research and develo

DeepMind 5.2k Jan 02, 2023
Paddle implementation for "Highly Efficient Knowledge Graph Embedding Learning with Closed-Form Orthogonal Procrustes Analysis" (NAACL 2021)

ProcrustEs-KGE Paddle implementation for Highly Efficient Knowledge Graph Embedding Learning with Orthogonal Procrustes Analysis 🙈 A more detailed re

Lincedo Lab 4 Jun 09, 2021
Implementation of U-Net and SegNet for building segmentation

Specialized project Created by Katrine Nguyen and Martin Wangen-Eriksen as a part of our specialized project at Norwegian University of Science and Te

Martin.w-e 3 Dec 07, 2022
Datasets and pretrained Models for StyleGAN3 ...

Datasets and pretrained Models for StyleGAN3 ... Dear arfiticial friend, this is a collection of artistic datasets and models that we have put togethe

lucid layers 34 Oct 06, 2022
Face-Recognition-based-Attendance-System - An implementation of Attendance System in python.

Face-Recognition-based-Attendance-System A real time implementation of Attendance System in python. Pre-requisites To understand the implentation of F

Muhammad Zain Ul Haque 1 Dec 31, 2021
Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study

Optimal Adaptive Allocation using Deep Reinforcement Learning in a Dose-Response Study Supplementary Materials for Kentaro Matsuura, Junya Honda, Imad

Kentaro Matsuura 4 Nov 01, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
Implementation of the federated dual coordinate descent (FedDCD) method.

FedDCD.jl Implementation of the federated dual coordinate descent (FedDCD) method. Installation To install, just call Pkg.add("https://github.com/Zhen

Zhenan Fan 6 Sep 21, 2022
Pre-training of Graph Augmented Transformers for Medication Recommendation

G-Bert Pre-training of Graph Augmented Transformers for Medication Recommendation Intro G-Bert combined the power of Graph Neural Networks and BERT (B

101 Dec 27, 2022
Implementation for paper "Towards the Generalization of Contrastive Self-Supervised Learning"

Contrastive Self-Supervised Learning on CIFAR-10 Paper "Towards the Generalization of Contrastive Self-Supervised Learning", Weiran Huang, Mingyang Yi

Weiran Huang 13 Nov 30, 2022
Background Matting: The World is Your Green Screen

Background Matting: The World is Your Green Screen By Soumyadip Sengupta, Vivek Jayaram, Brian Curless, Steve Seitz, and Ira Kemelmacher-Shlizerman Th

Soumyadip Sengupta 4.6k Jan 04, 2023
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022