Automatic differentiation with weighted finite-state transducers.

Related tags

Deep Learninggtn
Overview
logo

GTN: Automatic Differentiation with WFSTs

Quickstart | Installation | Documentation

facebookresearch Documentation Status

What is GTN?

GTN is a framework for automatic differentiation with weighted finite-state transducers. The framework is written in C++ and has bindings to Python.

The goal of GTN is to make adding and experimenting with structure in learning algorithms much simpler. This structure is encoded as weighted automata, either acceptors (WFSAs) or transducers (WFSTs). With gtn you can dynamically construct complex graphs from operations on simpler graphs. Automatic differentiation gives gradients with respect to any input or intermediate graph with a single call to gtn.backward.

Also checkout the repository gtn_applications which consists of GTN applications to Handwriting Recognition (HWR), Automatic Speech Recognition (ASR) etc.

Quickstart

First install the python bindings.

The following is a minimal example of building two WFSAs with gtn, constructing a simple function on the graphs, and computing gradients. Open In Colab

import gtn

# Make some graphs:
g1 = gtn.Graph()
g1.add_node(True)  # Add a start node
g1.add_node()  # Add an internal node
g1.add_node(False, True)  # Add an accepting node

# Add arcs with (src node, dst node, label):
g1.add_arc(0, 1, 1)
g1.add_arc(0, 1, 2)
g1.add_arc(1, 2, 1)
g1.add_arc(1, 2, 0)

g2 = gtn.Graph()
g2.add_node(True, True)
g2.add_arc(0, 0, 1)
g2.add_arc(0, 0, 0)

# Compute a function of the graphs:
intersection = gtn.intersect(g1, g2)
score = gtn.forward_score(intersection)

# Visualize the intersected graph:
gtn.draw(intersection, "intersection.pdf")

# Backprop:
gtn.backward(score)

# Print gradients of arc weights 
print(g1.grad().weights_to_list()) # [1.0, 0.0, 1.0, 0.0]

Installation

Requirements

  • A C++ compiler with good C++14 support (e.g. g++ >= 5)
  • cmake >= 3.5.1, and make

Python

Install the Python bindings with

pip install gtn

Building C++ from source

First, clone the project:

git clone [email protected]:facebookresearch/gtn.git && cd gtn

Create a build directory and run CMake and make:

mkdir -p build && cd build
cmake ..
make -j $(nproc)

Run tests with:

make test

Run make install to install.

Python bindings from source

Setting up your environment:

conda create -n gtn_env
conda activate gtn_env

Required dependencies:

cd bindings/python
conda install setuptools

Use one of the following commands for installation:

python setup.py install

or, to install in editable mode (for dev):

python setup.py develop

Python binding tests can be run with make test, or with

python -m unittest discover bindings/python/test

Run a simple example:

python bindings/python/examples/simple_graph.py

Citing this Repository

If you use the code in this repository, please cite:

Awni Hannun, Vineel Pratap, Jacob Kahn and Wei-Ning Hsu. Differentiable Weighted Finite-State Transducers. arXiv 2010.01003, 2020.

@article{hannun2020dwfst,
  title={Differentiable Weighted Finite-State Transducers},
  author={Hannun, Awni and Pratap, Vineel and Kahn, Jacob and Hsu, Wei-Ning},
  journal={arXiv preprint arXiv:2010.01003},
  year={2020}
}

License

GTN is licensed under a MIT license. See LICENSE.

Code release for our paper, "SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo"

SimNet: Enabling Robust Unknown Object Manipulation from Pure Synthetic Data via Stereo Thomas Kollar, Michael Laskey, Kevin Stone, Brijen Thananjeyan

68 Dec 14, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
[NeurIPS 2021] A weak-shot object detection approach by transferring semantic similarity and mask prior.

TransMaS This repository is the official pytorch implementation of the following paper: NIPS2021 Mixed Supervised Object Detection by TransferringMask

BCMI 49 Jul 27, 2022
GitHub repository for "Improving Video Generation for Multi-functional Applications"

Improving Video Generation for Multi-functional Applications GitHub repository for "Improving Video Generation for Multi-functional Applications" Pape

Bernhard Kratzwald 328 Dec 07, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Tilted Empirical Risk Minimization (ICLR '21)

Tilted Empirical Risk Minimization This repository contains the implementation for the paper Tilted Empirical Risk Minimization ICLR 2021 Empirical ri

Tian Li 40 Nov 28, 2022
NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation (ACL-IJCNLP 2021)

NeuralWOZ This code is official implementation of "NeuralWOZ: Learning to Collect Task-Oriented Dialogue via Model-based Simulation". Sungdong Kim, Mi

NAVER AI 31 Oct 25, 2022
A collection of inference modules for fastai2

fastinference A collection of inference modules for fastai including inference speedup and interpretability Install pip install fastinference There ar

Zachary Mueller 83 Oct 10, 2022
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
Synthesizing Long-Term 3D Human Motion and Interaction in 3D in CVPR2021

Long-term-Motion-in-3D-Scenes This is an implementation of the CVPR'21 paper "Synthesizing Long-Term 3D Human Motion and Interaction in 3D". Please ch

Jiashun Wang 76 Dec 13, 2022
This repo contains the implementation of YOLOv2 in Keras with Tensorflow backend.

Easy training on custom dataset. Various backends (MobileNet and SqueezeNet) supported. A YOLO demo to detect raccoon run entirely in brower is accessible at https://git.io/vF7vI (not on Windows).

Huynh Ngoc Anh 1.7k Dec 24, 2022
A map update dataset and benchmark

MUNO21 MUNO21 is a dataset and benchmark for machine learning methods that automatically update and maintain digital street map datasets. Previous dat

16 Nov 30, 2022
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics, sequence features, and user profiles.

CCasGNN A new framework, collaborative cascade prediction based on graph neural networks (CCasGNN) to jointly utilize the structural characteristics,

5 Apr 29, 2022
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Official implementation of the paper 'Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution' in CVPR 2022

LDL Paper | Supplementary Material Details or Artifacts: A Locally Discriminative Learning Approach to Realistic Image Super-Resolution Jie Liang*, Hu

150 Dec 26, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022