This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding)

Related tags

Deep LearningHCSC
Overview

HCSC: Hierarchical Contrastive Selective Coding

This repository provides a PyTorch implementation and model weights for HCSC (Hierarchical Contrastive Selective Coding), whose details are in this paper.

HCSC is an effective and efficient method to pre-train image encoders in a self-supervised fashion. In general, this method seeks to learn image representations with hierarchical semantic structures. It utilizes hierarchical K-means to derive hierarchical prototypes, and these prototypes represent the hierarchical semantics underlying the data. On such basis, we perform Instance-wise and Prototypical Contrastive Selective Coding to inject the information within hierarchical prototypes into image representations. HCSC has achieved SOTA performance on the self-supervised pre-training of CNNs (e.g., ResNet-50), and we will further study its potential on pre-training Vision Transformers.

Roadmap

  • [2022/02/01] The initial release! We release all source code for pre-training and downstream evaluation. We release three pre-trained ResNet-50 models: 200 epochs (single-crop), 200 epochs (multi-crop) and 400 epochs (single-crop, batch size: 256).

TODO

  • Finish the pre-training of 400 epochs ResNet-50 models (multi-crop) and release.
  • Finish the pre-training of 800 epochs ResNet-50 models (single- & multi-crop) and release.
  • Support Vision Transformer backbones.
  • Pre-train Vision Transformers with HCSC and release model weights under various configurations.

Model Zoo

We will continually release our pre-trained HCSC model weights and corresponding training configs. The current finished ones are as follows:

Backbone Method Crop Epoch Batch size Lincls top-1 Acc. KNN top-1 Acc. url config
ResNet-50 HCSC Single 200 256 69.2 60.7 model config
ResNet-50 HCSC Multi 200 256 73.3 66.6 model config
ResNet-50 HCSC Single 400 256 70.6 63.4 model config

Installation

Use following command to install dependencies (python3.7 with pip installed):

pip3 install -r requirement.txt

If having trouble installing PyTorch, follow the original guidance (https://pytorch.org/). Notably, the code is tested with cudatoolkit version 10.2.

Pre-training on ImageNet

Download ImageNet dataset under [ImageNet Folder]. Go to the path "[ImageNet Folder]/val" and use this script to build sub-folders.

To train single-crop HCSC on 8 Tesla-V100-32GB GPUs for 200 epochs, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=8 \
pretrain.py [your ImageNet Folder]

To train multi-crop HCSC on 8 Tesla-V100-32GB GPUs for 200 epochs, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=8 \
pretrain.py --multicrop [your ImageNet Folder]

Downstream Evaluation

Evaluation: Linear Classification on ImageNet

With a pre-trained model, to train a supervised linear classifier with all available GPUs, run:

python3 eval_lincls_imagenet.py --data [your ImageNet Folder] \
--dist-url tcp://localhost:10001 --world-size 1 --rank 0 \
--pretrained [your pre-trained model (example:out.pth)]

Evaluation: KNN Evaluation on ImageNet

To reproduce the KNN evaluation results with a pre-trained model using a single GPU, run:

python3 -m torch.distributed.launch --master_port [your port] --nproc_per_node=1 eval_knn.py \
--checkpoint_key state_dict \
--pretrained [your pre-trained model] \
--data [your ImageNet Folder]

Evaluation: Semi-supervised Learning on ImageNet

To fine-tune a pre-trained model with 1% or 10% ImageNet labels with 8 Tesla-V100-32GB GPUs, run:

1% of labels:

python3 -m torch.distributed.launch --nproc_per_node 8 --master_port [your port] eval_semisup.py \
--labels_perc 1 \
--pretrained [your pretrained weights] \
[your ImageNet Folder]

10% of labels:

python3 -m torch.distributed.launch --nproc_per_node 8 --master_port [your port] eval_semisup.py \
--labels_perc 10 \
--pretrained [your pretrained weights] \
[your ImageNet Folder]

Evaluation: Transfer Learning - Classification on VOC / Places205

VOC

1. Download the VOC dataset.
2. Finetune and evaluate on PASCAL VOC (with a single GPU):
cd voc_cls/ 
python3 main.py --data [your voc data folder] \
--pretrained [your pretrained weights]

Places205

1. Download the Places205 dataset (resized 256x256 version)
2. Linear Classification on Places205 (with all available GPUs):
python3 eval_lincls_places.py --data [your places205 data folder] \
--data-url tcp://localhost:10001 \
--pretrained [your pretrained weights]

Evaluation: Transfer Learning - Object Detection on VOC / COCO

1. Download VOC and COCO Dataset (under ./detection/datasets).

2. Install detectron2.

3. Convert a pre-trained model to the format of detectron2:

cd detection
python3 convert-pretrain-to-detectron2.py [your pretrained weight] out.pkl

4. Train on PASCAL VOC/COCO:

Finetune and evaluate on VOC (with 8 Tesla-V100-32GB GPUs):
cd detection
python3 train_net.py --config-file ./configs/pascal_voc_R_50_C4_24k_hcsc.yaml \
--num-gpus 8 MODEL.WEIGHTS out.pkl
Finetune and evaluate on COCO (with 8 Tesla-V100-32GB GPUs):
cd detection
python3 train_net.py --config-file ./configs/coco_R_50_C4_2x_hcsc.yaml \
--num-gpus 8 MODEL.WEIGHTS out.pkl

Evaluation: Clustering Evaluation on ImageNet

To reproduce the clustering evaluation results with a pre-trained model using all available GPUs, run:

python3 eval_clustering.py --dist-url tcp://localhost:10001 \
--multiprocessing-distributed --world-size 1 --rank 0 \
--num-cluster [target num cluster] \
--pretrained [your pretrained model weights] \
[your ImageNet Folder]

In the experiments of our paper, we set --num-cluster as 25000 and 1000.

License

This repository is released under the MIT license as in the LICENSE file.

Citation

If you find this repository useful, please kindly consider citing the following paper:

@article{guo2022hcsc,
  title={HCSC: Hierarchical Contrastive Selective Coding},
  author={Guo, Yuanfan and Xu, Minghao and Li, Jiawen and Ni, Bingbing and Zhu, Xuanyu and Sun, Zhenbang and Xu, Yi},
  journal={arXiv preprint arXiv:2202.00455},
  year={2022}
}
Owner
YUANFAN GUO
From SJTU. Working on self-supervised pre-training.
YUANFAN GUO
This is the repository for the paper "Have I done enough planning or should I plan more?"

Metacognitive Learning Tool box https://re.is.mpg.de What Is This? This repository contains two modules used to analyse metacognitive learning in huma

0 Dec 01, 2021
Revisiting Self-Training for Few-Shot Learning of Language Model.

SFLM This is the implementation of the paper Revisiting Self-Training for Few-Shot Learning of Language Model. SFLM is short for self-training for few

15 Nov 19, 2022
PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization using Augmented-Self Reference and Dense Semantic Correspondence) and pre-trained model on ImageNet dataset

Reference-Based-Sketch-Image-Colorization-ImageNet This is a PyTorch implementation of CVPR 2020 paper (Reference-Based Sketch Image Colorization usin

Yuzhi ZHAO 11 Jul 28, 2022
Facial Image Inpainting with Semantic Control

Facial Image Inpainting with Semantic Control In this repo, we provide a model for the controllable facial image inpainting task. This model enables u

Ren Yurui 8 Nov 22, 2021
JupyterNotebook - C/C++, Javascript, HTML, LaTex, Shell scripts in Jupyter Notebook Also run them on remote computer

JupyterNotebook Read, write and execute C, C++, Javascript, Shell scripts, HTML, LaTex in jupyter notebook, And also execute them on remote computer R

1 Jan 09, 2022
Cross-Modal Contrastive Learning for Text-to-Image Generation

Cross-Modal Contrastive Learning for Text-to-Image Generation This repository hosts the open source JAX implementation of XMC-GAN. Setup instructions

Google Research 94 Nov 12, 2022
iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis

iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis iPOKE: Poking a Still Image for Controlled Stochastic Video Synthesis Andreas Bl

CompVis Heidelberg 36 Dec 25, 2022
Unity Propagation in Bayesian Networks Handling Inconsistency via Unity Smoothing

This repository contains the scripts needed to generate the results from the paper Unity Propagation in Bayesian Networks Handling Inconsistency via U

0 Jan 19, 2022
Understanding the Properties of Minimum Bayes Risk Decoding in Neural Machine Translation.

Understanding Minimum Bayes Risk Decoding This repo provides code and documentation for the following paper: Mรผller and Sennrich (2021): Understanding

ZurichNLP 13 May 01, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
THIS IS THE **OLD** PYMC PROJECT. PLEASE USE PYMC3 INSTEAD:

Introduction Version: 2.3.8 Authors: Chris Fonnesbeck Anand Patil David Huard John Salvatier Web site: https://github.com/pymc-devs/pymc Documentation

PyMC 7.2k Jan 07, 2023
License Plate Detection Application

LicensePlate_Project ๐Ÿš— ๐Ÿš™ [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ๋ผ๋ฒจ๋ง ์ฐจ๋Ÿ‰ ๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€๋ฅผ ์ง์ ‘ ์ˆ˜์ง‘ํ•˜์—ฌ ๊ฐ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด '๋ฒˆํ˜ธํŒ

4 Oct 10, 2022
Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling

RHGN Source code for CIKM 2021 paper for Relation-aware Heterogeneous Graph for User Profiling Dependencies torch==1.6.0 torchvision==0.7.0 dgl==0.7.1

Big Data and Multi-modal Computing Group, CRIPAC 6 Nov 29, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications

Labelbox Labelbox is the fastest way to annotate data to build and ship artificial intelligence applications. Use this github repository to help you s

labelbox 1.7k Dec 29, 2022
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved ๐Ÿ  We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
This is a official repository of SimViT.

SimViT This is a official repository of SimViT. We will open our models and codes about object detection and semantic segmentation soon. Our code refe

ligang 57 Dec 15, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022