Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Overview

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation

Code to be further cleaned...

This repo contains the code of the following paper:

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation

Shuai Lin, Pan Zhou, Xiaodan Liang, Jianheng Tang, Ruihui Zhao, Ziliang Chen, Liang Lin.
AAAI 2021

Prerequisites

  1. Allennlp (0.9.1-unreleased)

  2. pytorch == 1.4.0

  3. Others should be found in ./allennlp/requirements.txt

[Note]: You need to install allennlp with the editable mode, i.e.,

cd ./allennlp
pip install --editable .
cd ..

since we have modified this toolkit (including added the metatrainer.py in the directory ./allennlp/training and so on).

Datasets

Please download both datasets from the google drive as follows:

wget https://drive.google.com/file/d/1KZ0CrIVZhSLxlZ-V5pnksvgH1xlyd54F/view?usp=sharing
tar zxvf cy.tar.gz
wget https://drive.google.com/file/d/1sZzb3Nzm_Z37lNCfgusJscFuiyhUON5j/view?usp=sharing
tar zxvf fd.tar.gz
  1. CMDD: The directory fd/dis_pk_dir, which includes raw_data, meta_train and meta_test. (The number of the file name represents the ID of a disease.) You can also obtain it at the link

  2. MDG-Chunyu: The directory cy/dis_pk_dir, which also includes the raw_data, meta_train and meta_test. The ID of diseases and symptoms are recorded in the user_dict.txt. The disease IDs are as follows:

{
  '胃炎': 2,
  '普通感冒': 13,
  '肺炎': 73,
  '便秘': 6,
  '胃肠功能紊乱': 42,
  '肠炎': 9,
  '肠易激综合征': 40,
  '食管炎': 27,
  '胃溃疡': 30,
  '阑尾炎': 35,
  '胆囊炎': 33,
  '胰腺炎': 48,
  '肠梗阻': 52,
  '痔疮': 18,
  '肝硬化': 46,
}

Quick Start

Most of the running commands are written in the script run.sh, which follows the offical train/fine-tune/evaluate way of the allennlp. Take the following one as an example:

[1]. Training:

CUDA_VISIBLE_DEVICES=1 allennlp train -s $save_directory$ \
  $config_file(.json)$ \
  --include-package $model_file$

[2]. Fine-tuning:

CUDA_VISIBLE_DEVICES=1 allennlp fine-tune -m $old save_directory$ \
  -c $config_file(.json)$ \
  --include-package $model_file$
  -s $new save_directory$

[3]. Testing:

CUDA_VISIBLE_DEVICES=3 allennlp evaluate  $new save_directory$ \
  $test_data$ \
  --include-package $model_file$ \
  --output-file $output_directory$
Owner
Shuai Lin
Master student @sysu, mainly focus on ML/NLP.
Shuai Lin
functorch is a prototype of JAX-like composable function transforms for PyTorch.

functorch is a prototype of JAX-like composable function transforms for PyTorch.

Facebook Research 1.2k Jan 09, 2023
Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

Official PyTorch Implementation of Learning Self-Similarity in Space and Time as Generalized Motion for Video Action Recognition, ICCV 2021

26 Dec 07, 2022
A Japanese Medical Information Extraction Toolkit

JaMIE: a Japanese Medical Information Extraction toolkit Joint Japanese Medical Problem, Modality and Relation Recognition The Train/Test phrases requ

7 Dec 12, 2022
MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

MINIROCKET: A Very Fast (Almost) Deterministic Transform for Time Series Classification

187 Dec 26, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

This application is the basic of automated online-class-joiner(for YıldızEdu) within the right time. Gets the ZOOM link by scheduled date and time.

215355 1 Dec 16, 2021
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
Code for paper 'Hand-Object Contact Consistency Reasoning for Human Grasps Generation' at ICCV 2021

GraspTTA Hand-Object Contact Consistency Reasoning for Human Grasps Generation (ICCV 2021). Project Page with Videos Demo Quick Results Visualization

Hanwen Jiang 47 Dec 09, 2022
Blind Video Temporal Consistency via Deep Video Prior

deep-video-prior (DVP) Code for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior PyTorch implementation | paper | project web

Chenyang LEI 272 Dec 21, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini!

ConversorDeMedidas_CapuccinoGelado Este conversor criará a medida exata para sua receita de capuccino gelado da grandiosa Rafaella Ballerini! Requirem

Arthur Ottoni Ribeiro 48 Nov 15, 2022
I-BERT: Integer-only BERT Quantization

I-BERT: Integer-only BERT Quantization HuggingFace Implementation I-BERT is also available in the master branch of HuggingFace! Visit the following li

Sehoon Kim 139 Dec 27, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
Re-implementation of the vector capsule with dynamic routing

VectorCapsule Re-implementation of the vector capsule with dynamic routing We implement the vector capsule and dynamic routing via graph neural networ

ZhenchaoTang 10 Feb 10, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023