PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Overview

Shape-aware Convolutional Layer (ShapeConv)

PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Introduction

We design a Shape-aware Convolutional(ShapeConv) layer to explicitly model the shape information for enhancing the RGB-D semantic segmentation accuracy. Specifically, we decompose the depth feature into a shape-component and a value component, after which two learnable weights are introduced to handle the shape and value with differentiation. Extensive experiments on three challenging indoor RGB-D semantic segmentation benchmarks, i.e., NYU-Dv2(-13,-40), SUN RGB-D, and SID, demonstrate the effectiveness of our ShapeConv when employing it over five popular architectures.

image

Usage

Installation

  1. Requirements
  • Linux
  • Python 3.6+
  • PyTorch 1.7.0 or higher
  • CUDA 10.0 or higher

We have tested the following versions of OS and softwares:

  • OS: Ubuntu 16.04.6 LTS
  • CUDA: 10.0
  • PyTorch 1.7.0
  • Python 3.6.9
  1. Install dependencies.
pip install -r requirements.txt

Dataset

Download the offical dataset and convert to a format appropriate for this project. See here.

Or download the converted dataset:

Evaluation

  1. Model

    Download trained model and put it in folder ./model_zoo. See all trained models here.

  2. Config

    Edit config file in ./config. The config files in ./config correspond to the model files in ./models.

    1. Set inference.gpu_id = CUDA_VISIBLE_DEVICES. CUDA_VISIBLE_DEVICES is used to specify which GPUs should be visible to a CUDA application, e.g., inference.gpu_id = "0,1,2,3".
    2. Set dataset_root = path_to_dataset. path_to_dataset represents the path of dataset. e.g.,dataset_root = "/home/shape_conv/nyu_v2".
  3. Run

    1. Ditributed evaluation, please run:
    ./tools/dist_test.sh config_path checkpoint_path gpu_num
    • config_path is path of config file;
    • checkpoint_pathis path of model file;
    • gpu_num is the number of GPUs used, note that gpu_num <= len(inference.gpu_id).

    E.g., evaluate shape-conv model on NYU-V2(40 categories), please run:

    ./tools/dist_test.sh configs/nyu/nyu40_deeplabv3plus_resnext101_shape.py model_zoo/nyu40_deeplabv3plus_resnext101_shape.pth 4
    1. Non-distributed evaluation
    python tools/test.py config_path checkpoint_path

Train

  1. Config

    Edit config file in ./config.

    1. Set inference.gpu_id = CUDA_VISIBLE_DEVICES.

      E.g.,inference.gpu_id = "0,1,2,3".

    2. Set dataset_root = path_to_dataset.

      E.g.,dataset_root = "/home/shape_conv/nyu_v2".

  2. Run

    1. Ditributed training
    ./tools/dist_train.sh config_path gpu_num

    E.g., train shape-conv model on NYU-V2(40 categories) with 4 GPUs, please run:

    ./tools/dist_train.sh configs/nyu/nyu40_deeplabv3plus_resnext101_shape.py 4
    1. Non-distributed training
    python tools/train.py config_path

Result

For more result, please see model zoo.

NYU-V2(40 categories)

Architecture Backbone MS & Flip Shape Conv mIOU
DeepLabv3plus ResNeXt-101 False False 48.9%
DeepLabv3plus ResNeXt-101 False True 50.2%
DeepLabv3plus ResNeXt-101 True False 50.3%
DeepLabv3plus ResNeXt-101 True True 51.3%

SUN-RGBD

Architecture Backbone MS & Flip Shape Conv mIOU
DeepLabv3plus ResNet-101 False False 46.9%
DeepLabv3plus ResNet-101 False True 47.6%
DeepLabv3plus ResNet-101 True False 47.6%
DeepLabv3plus ResNet-101 True True 48.6%

SID(Stanford Indoor Dataset)

Architecture Backbone MS & Flip Shape Conv mIOU
DeepLabv3plus ResNet-101 False False 54.55%
DeepLabv3plus ResNet-101 False True 60.6%

Acknowledgments

This repo was developed based on vedaseg.

Owner
Hanchao Leng
Hanchao Leng
Train robotic agents to learn pick and place with deep learning for vision-based manipulation in PyBullet.

Ravens is a collection of simulated tasks in PyBullet for learning vision-based robotic manipulation, with emphasis on pick and place. It features a Gym-like API with 10 tabletop rearrangement tasks,

Google Research 367 Jan 09, 2023
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 799 Dec 28, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Official PyTorch code of Holistic 3D Scene Understanding from a Single Image with Implicit Representation (CVPR 2021)

Implicit3DUnderstanding (Im3D) [Project Page] Holistic 3D Scene Understanding from a Single Image with Implicit Representation Cheng Zhang, Zhaopeng C

Cheng Zhang 149 Jan 08, 2023
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
An end-to-end regression problem of predicting the price of properties in Bangalore.

Bangalore-House-Price-Prediction An end-to-end regression problem of predicting the price of properties in Bangalore. Deployed in Heroku using Flask.

Shruti Balan 1 Nov 25, 2022
[ICLR 2022] Pretraining Text Encoders with Adversarial Mixture of Training Signal Generators

AMOS This repository contains the scripts for fine-tuning AMOS pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: Pretraining Text Encoders wi

Microsoft 22 Sep 15, 2022
SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images

SymmetryNet SymmetryNet: Learning to Predict Reflectional and Rotational Symmetries of 3D Shapes from Single-View RGB-D Images ACM Transactions on Gra

26 Dec 05, 2022
This is the dataset for testing the robustness of various VO/VIO methods

KAIST VIO dataset This is the dataset for testing the robustness of various VO/VIO methods You can download the whole dataset on KAIST VIO dataset Ind

1 Sep 01, 2022
Pytorch implementation of forward and inverse Haar Wavelets 2D

Pytorch implementation of forward and inverse Haar Wavelets 2D

Sergei Belousov 9 Oct 30, 2022
Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers

Segmentation Transformer Implementation of Segmentation Transformer in PyTorch, a new model to achieve SOTA in semantic segmentation while using trans

Abhay Gupta 161 Dec 08, 2022
Code repository for our paper "Learning to Generate Scene Graph from Natural Language Supervision" in ICCV 2021

Scene Graph Generation from Natural Language Supervision This repository includes the Pytorch code for our paper "Learning to Generate Scene Graph fro

Yiwu Zhong 64 Dec 24, 2022
MediaPipe is a an open-source framework from Google for building multimodal

MediaPipe is a an open-source framework from Google for building multimodal (eg. video, audio, any time series data), cross platform (i.e Android, iOS, web, edge devices) applied ML pipelines. It is

Bhavishya Pandit 3 Sep 30, 2022
[CVPR 2022 Oral] TubeDETR: Spatio-Temporal Video Grounding with Transformers

TubeDETR: Spatio-Temporal Video Grounding with Transformers Website • STVG Demo • Paper This repository provides the code for our paper. This includes

Antoine Yang 108 Dec 27, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
Block Sparse movement pruning

Movement Pruning: Adaptive Sparsity by Fine-Tuning Magnitude pruning is a widely used strategy for reducing model size in pure supervised learning; ho

Hugging Face 54 Dec 20, 2022
6D Grasping Policy for Point Clouds

GA-DDPG [website, paper] Installation git clone https://github.com/liruiw/GA-DDPG.git --recursive Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, py

Lirui Wang 48 Dec 21, 2022