Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Related tags

Deep LearningAugSelf
Overview

Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Accepted to NeurIPS 2021

thumbnail

TL;DR: Learning augmentation-aware information by predicting the difference between two augmented samples improves the transferability of representations.

Dependencies

conda create -n AugSelf python=3.8 pytorch=1.7.1 torchvision=0.8.2 cudatoolkit=10.1 ignite -c pytorch
conda activate AugSelf
pip install scipy tensorboard kornia==0.4.1 sklearn

Checkpoints

We provide ImageNet100-pretrained models in this Dropbox link.

Pretraining

We here provide SimSiam+AugSelf pretraining scripts. For training the baseline (i.e., no AugSelf), remove --ss-crop and --ss-color options. For using other frameworks like SimCLR, use the --framework option.

STL-10

CUDA_VISIBLE_DEVICES=0 python pretrain.py \
    --logdir ./logs/stl10/simsiam/aug_self \
    --framework simsiam \
    --dataset stl10 \
    --datadir DATADIR \
    --model resnet18 \
    --batch-size 256 \
    --max-epochs 200 \
    --ss-color 1.0 --ss-crop 1.0

ImageNet100

python pretrain.py \
    --logdir ./logs/imagenet100/simsiam/aug_self \
    --framework simsiam \
    --dataset imagenet100 \
    --datadir DATADIR \
    --batch-size 256 \
    --max-epochs 500 \
    --model resnet50 \
    --base-lr 0.05 --wd 1e-4 \
    --ckpt-freq 50 --eval-freq 50 \
    --ss-crop 0.5 --ss-color 0.5 \
    --num-workers 16 --distributed

Evaluation

Our main evaluation setups are linear evaluation on fine-grained classification datasets (Table 1) and few-shot benchmarks (Table 2).

linear evaluation

CUDA_VISIBLE_DEVICES=0 python transfer_linear_eval.py \
    --pretrain-data imagenet100 \
    --ckpt CKPT \
    --model resnet50 \
    --dataset cifar10 \
    --datadir DATADIR \
    --metric top1

few-shot

CUDA_VISIBLE_DEVICES=0 python transfer_few_shot.py \
    --pretrain-data imagenet100 \
    --ckpt CKPT \
    --model resnet50 \
    --dataset cub200 \
    --datadir DATADIR
Owner
hankook
hankook
[CVPR 2021] Anycost GANs for Interactive Image Synthesis and Editing

Anycost GAN video | paper | website Anycost GANs for Interactive Image Synthesis and Editing Ji Lin, Richard Zhang, Frieder Ganz, Song Han, Jun-Yan Zh

MIT HAN Lab 726 Dec 28, 2022
PyTorch implementation of Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network

hierarchical-multi-label-text-classification-pytorch Hierarchical Multi-label Text Classification: An Attention-based Recurrent Network Approach This

Mingu Kang 17 Dec 13, 2022
Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series Forecasting.

Non-AR Spatial-Temporal Transformer Introduction Implementation of the paper NAST: Non-Autoregressive Spatial-Temporal Transformer for Time Series For

Chen Kai 66 Nov 28, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
KE-Dialogue: Injecting knowledge graph into a fully end-to-end dialogue system.

Learning Knowledge Bases with Parameters for Task-Oriented Dialogue Systems This is the implementation of the paper: Learning Knowledge Bases with Par

CAiRE 42 Nov 10, 2022
General Assembly Capstone: NBA Game Predictor

Project 6: Predicting NBA Games Problem Statement Can I predict the results of NBA games from the back-half of a season from the opening half of the s

Adam Muhammad Klesc 1 Jan 14, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in 3D.

ApproxMVBB Status Build UnitTests Homepage Fast algorithms to compute an approximation of the minimal volume oriented bounding box of a point cloud in

Gabriel Nützi 390 Dec 31, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data

SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data Au

14 Nov 28, 2022
Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)

Cryptocurrency Prediction with Artificial Intelligence (Deep Learning via LSTM Neural Networks)- Emirhan BULUT

Emirhan BULUT 102 Nov 18, 2022
Code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Residual Convolutional Neural Networks

Biomedical Entity Linking This repo provides the code for the paper BERT might be Overkill: A Tiny but Effective Biomedical Entity Linker based on Res

Tuan Manh Lai 24 Oct 24, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
A DeepStack custom model for detecting common objects in dark/night images and videos.

DeepStack_ExDark This repository provides a custom DeepStack model that has been trained and can be used for creating a new object detection API for d

MOSES OLAFENWA 98 Dec 24, 2022
Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation in PyTorch

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Implementation of StyleSpace Analysis: Disentangled Controls for StyleGAN Ima

Xuanchi Ren 86 Dec 07, 2022
Automatic packaging of the open-composite libs for OvGME

OvGME Packager for OpenXR – OpenComposite for DCS Note This repository is currently unsupported and needs to be migrated to the upstream OpenComposite

12 Nov 03, 2022
robomimic: A Modular Framework for Robot Learning from Demonstration

robomimic [Homepage]   [Documentation]   [Study Paper]   [Study Website]   [ARISE Initiative] Latest Updates [08/09/2021] v0.1.0: Initial code and pap

ARISE Initiative 178 Jan 05, 2023
A colab notebook for training Stylegan2-ada on colab, transfer learning onto your own dataset.

Stylegan2-Ada-Google-Colab-Starter-Notebook A no thrills colab notebook for training Stylegan2-ada on colab. transfer learning onto your own dataset h

Harnick Khera 66 Dec 16, 2022
[Pedestron] Generalizable Pedestrian Detection: The Elephant In The Room. @ CVPR2021

Pedestron Pedestron is a MMdetection based repository, that focuses on the advancement of research on pedestrian detection. We provide a list of detec

Irtiza Hasan 594 Jan 05, 2023