📔️ Generate a text-based journal from a template file.

Overview

JGen 📔️

Generate a text-based journal from a template file.

Contents

Getting Started

  1. Clone this repository -
  • git clone https://github.com/harrison-broadbent/JGen.git
  1. Edit "template.txt", copy and paste an example from /templates, or use the placeholder template -
  • vim template.txt
  1. Run JGen and follow the prompts -
  • python3 JGen.py
  1. Inspect "journal.txt" -
  • vim journal.txt

Example

Given the following template (available as templates/template_weekly.txt) -

_____________________________
Week: WEEKNUM, Year: YY
DD_NAME, DD MM_NAME - +++++++
DD_NAME, DD MM_NAME

Todos: - - -

Plans: - - -

and running JGen for two entries gives us -

_____________________________
Week: 10, Year: 2021
Saturday, 13 March -
Saturday, 20 March

Todos:
	-
	-
	-

Plans:
	-
	-
	-


_____________________________
Week: 11, Year: 2021
Saturday, 20 March -
Saturday, 27 March

Todos:
	-
	-
	-

Plans:
	-
	-
	-

Lets break down what happened -

  1. JGen sets it's internal date - "today's" date, from your perspective.
  2. JGen runs through line 1 and line 2 of template.txt, replacing keywords with their corresponding information and then writing the output to journal.txt.
  3. At the end of line 2 there are seven + (plus) symbols
    • JGen removes these from the output, and increments the internal date counter by 7 days.
  4. JGen fills out line 3 with the new date information, then fills out the rest of the information for the first entry.
  5. It then repeats this for the second entry, carrying over the date from the end of the first entry.
  6. JGen halts, with journal.txt containing our final output.

Overview

JGen parses a given template file to generate a journal file.

JGen runs through the template file and replaces keywords with their actual values (dates - day/month/year etc.), for a specified number of entries.

Usage

The JGen Python script contains all the code for the parser. To get started:

  • Download the JGen script.

  • Create a template.txt file (or download and rename one of the examples in /templates), and place it in the same directory as the JGen Python script.

    • See Details below for more information on creating a template.

    • See an Example to walk through a specific example of a template file.

  • Run the JGen Python script, and input the number of times the template should be reproduced.

    • Ex: 365 entries for a daily journal spanning a year, 52 entries for a weekly journal
  • journal.txt will be populated with text based on the template and the number of entries specified.

Details

See the Example section below if you want to jump straight into seeing how JGen works, by walking though an example.

JGen parses the template file, replacing any of the reserved keywords, shown below, with their corresponding date values.

Part of the templating process is to indicate using a (+) symbol when to increment the internal date counter, which JGen picks up as it parses the file. It also strips all (+) symbols from the file.

Reserved Keywords

  • DD

    • The date number.
    • 01, 05, 10, 21 etc.
  • MM

    • The month number.
    • 01, 10, 12 etc.
  • YY

    • The year.
    • 2020, 2021 etc.
  • DD_NAME

    • The name of the day.
    • Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, Sunday
  • MM_NAME

    • January, February etc.
  • DAYNUM

    • Day number of the year.
    • 123, 340 etc.
  • WEEKNUM

    • Week number of the year.
    • 13, 51 etc.
  • +

    • used to increment the internal date counter

    • will only increment after the entire line has been parsed

      • for example, parsing
      DD/MM/YY+ - DD/MM/YY
      

      would give

      21/02/2050 - 21/02/2050
      

      and not

      21/02/2050 - 28/02/2050
      

Gotchas

  • + can only be used to increment the date.

    • All + symbols are removed from the output.
    • ie. journal.txt file will never contain a + character
  • As mentioned in the "reserved keywords" section of this readme, the + characters are only interpreted at the end of a line.

    • Currently, to work around this, just place the second date on a new line (like in templates/template_weekly.txt)

    • For example, parsing

      DD/MM/YY+ - DD/MM/YY
      

      would give

      21/02/2050 - 21/02/2050
      

      and not

      21/02/2050 - 28/02/2050
      
You might also like...
Count the frequency of letters or words in a text file and show a graph.

Word Counter By EBUS Coding Club Count the frequency of letters or words in a text file and show a graph. Requirements Python 3.9 or higher matplotlib

Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech

epub2audiobook Creating an Audiobook (mp3 file) using a Ebook (epub) using BeautifulSoup and Google Text to Speech Input examples qual a pasta do seu

ADCS cert template modification and ACL enumeration

Purpose This tool is designed to aid an operator in modifying ADCS certificate templates so that a created vulnerable state can be leveraged for privi

Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.
Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code.

textgenrnn Easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code, or quickly tr

Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Kashgari is a production-level NLP Transfer learning framework built on top of tf.keras for text-labeling and text-classification, includes Word2Vec, BERT, and GPT2 Language Embedding.

Kashgari Overview | Performance | Installation | Documentation | Contributing 🎉 🎉 🎉 We released the 2.0.0 version with TF2 Support. 🎉 🎉 🎉 If you

Comments
  • Please update docs with example for running JGen.py

    Please update docs with example for running JGen.py

    Hello, this looks interesting and I want to test things out.

    I couldn't run the script in under 1 minute so I'm showing what I did. Possibly a simple copy paste example in the docs will help.

    image

    opened by anrei0000 3
Releases(v0.1)
Owner
Harrison Broadbent
√67
Harrison Broadbent
Textpipe: clean and extract metadata from text

textpipe: clean and extract metadata from text textpipe is a Python package for converting raw text in to clean, readable text and extracting metadata

Textpipe 298 Nov 21, 2022
HF's ML for Audio study group

Hugging Face Machine Learning for Audio Study Group Welcome to the ML for Audio Study Group. Through a series of presentations, paper reading and disc

Vaibhav Srivastav 110 Jan 01, 2023
Free and Open Source Machine Translation API. 100% self-hosted, offline capable and easy to setup.

LibreTranslate Try it online! | API Docs | Community Forum Free and Open Source Machine Translation API, entirely self-hosted. Unlike other APIs, it d

3.4k Dec 27, 2022
PyTorch impelementations of BERT-based Spelling Error Correction Models.

PyTorch impelementations of BERT-based Spelling Error Correction Models

Heng Cai 209 Dec 30, 2022
NLP Core Library and Model Zoo based on PaddlePaddle 2.0

PaddleNLP 2.0拥有丰富的模型库、简洁易用的API与高性能的分布式训练的能力,旨在为飞桨开发者提升文本建模效率,并提供基于PaddlePaddle 2.0的NLP领域最佳实践。

6.9k Jan 01, 2023
EasyTransfer is designed to make the development of transfer learning in NLP applications easier.

EasyTransfer is designed to make the development of transfer learning in NLP applications easier. The literature has witnessed the success of applying

Alibaba 819 Jan 03, 2023
Smart discord chatbot integrated with Dialogflow to manage different classrooms and assist in teaching!

smart-school-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
APEACH: Attacking Pejorative Expressions with Analysis on Crowd-generated Hate Speech Evaluation Datasets

APEACH - Korean Hate Speech Evaluation Datasets APEACH is the first crowd-generated Korean evaluation dataset for hate speech detection. Sentences of

Kevin-Yang 70 Dec 06, 2022
This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Technique for Text Classification

The baseline code is for EDA: Easy Data Augmentation techniques for boosting performance on text classification tasks

Akbar Karimi 81 Dec 09, 2022
Collection of scripts to pinpoint obfuscated code

Obfuscation Detection (v1.0) Author: Tim Blazytko Automatically detect control-flow flattening and other state machines Description: Scripts and binar

Tim Blazytko 230 Nov 26, 2022
中文无监督SimCSE Pytorch实现

A PyTorch implementation of unsupervised SimCSE SimCSE: Simple Contrastive Learning of Sentence Embeddings 1. 用法 无监督训练 python train_unsup.py ./data/ne

99 Dec 23, 2022
Rhyme with AI

Local development Create a conda virtual environment and activate it: conda env create --file environment.yml conda activate rhyme-with-ai Install the

GoDataDriven 28 Nov 21, 2022
Contains the code and data for our #ICSE2022 paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Naming Sequences"

CodeFill This repository contains the code for our paper titled as "CodeFill: Multi-token Code Completion by Jointly Learning from Structure and Namin

Software Analytics Lab 11 Oct 31, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Word2Wave: a framework for generating short audio samples from a text prompt using WaveGAN and COALA.

Word2Wave is a simple method for text-controlled GAN audio generation. You can either follow the setup instructions below and use the source code and CLI provided in this repo or you can have a play

Ilaria Manco 91 Dec 23, 2022
Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields

Geometry-Consistent Neural Shape Representation with Implicit Displacement Fields [project page][paper][cite] Geometry-Consistent Neural Shape Represe

Yifan Wang 100 Dec 19, 2022
Pre-training BERT masked language models with custom vocabulary

Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p

Stella Douka 14 Nov 02, 2022
Summarization, translation, sentiment-analysis, text-generation and more at blazing speed using a T5 version implemented in ONNX.

Summarization, translation, Q&A, text generation and more at blazing speed using a T5 version implemented in ONNX. This package is still in alpha stag

Abel 211 Dec 28, 2022
Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Toy Machine Learning Pipeline Table of Contents About Getting Started ML task description and evaluation procedure Dataset description Repository stru

Shreya Shankar 190 Dec 21, 2022
A library that integrates huggingface transformers with the world of fastai, giving fastai devs everything they need to train, evaluate, and deploy transformer specific models.

blurr A library that integrates huggingface transformers with version 2 of the fastai framework Install You can now pip install blurr via pip install

ohmeow 253 Dec 31, 2022