Toy example of an applied ML pipeline for me to experiment with MLOps tools.

Overview

Toy Machine Learning Pipeline

Table of Contents
  1. About
  2. Getting Started
  3. ML task description and evaluation procedure
  4. Dataset description
  5. Repository structure
  6. Utils documentation
  7. Roadmap
  8. Contributing
  9. Contact

About

This is a toy example of a standalone ML pipeline written entirely in Python. No external tools are incorporated into the master branch. I built this for two reasons:

  1. To experiment with my own ideas for MLOps tools, as it is hard to develop devtools in a vacuum :)
  2. To have something to integrate existing MLOps tools with so I can have real opinions

The following diagram describes the pipeline at a high level. The README describes it in more detail.

Diagram

Getting started

This pipeline is broken down into several components, described in a high level by the directories in this repository. See the Makefile for various commands you can run, but to serve the inference API locally, you can do the following:

  1. git clone the repository
  2. In the root directory of the repo, run make serve
  3. [OPTIONAL] In a new tab, run make inference to ping the API with some sample records

All Python dependencies and virtual environment creation is handled by the Makefile. See setup.py to see the packages installed into the virtual environment, which mainly consist of basic Python packages such as pandas or sklearn.

ML task description and evaluation procedure

We train a model to predict whether a passenger in a NYC taxicab ride will give the driver a large tip. This is a binary classification task. A large tip is arbitrarily defined as greater than 20% of the total fare (before tip). To evaluate the model or measure the efficacy of the model, we measure the F1 score.

The current best model is an instance of sklearn.ensemble.RandomForestClassifier with max_depth of 10 and other default parameters. The test set F1 score is 0.716. I explored this toy task earlier in my debugging ML talk.

Dataset description

We use the yellow taxicab trip records from the NYC Taxi & Limousine Comission public dataset, which is stored in a public aws S3 bucket. The data dictionary can be found here and is also shown below:

Field Name Description
VendorID A code indicating the TPEP provider that provided the record. 1= Creative Mobile Technologies, LLC; 2= VeriFone Inc.
tpep_pickup_datetime The date and time when the meter was engaged.
tpep_dropoff_datetime The date and time when the meter was disengaged.
Passenger_count The number of passengers in the vehicle. This is a driver-entered value.
Trip_distance The elapsed trip distance in miles reported by the taximeter.
PULocationID TLC Taxi Zone in which the taximeter was engaged.
DOLocationID TLC Taxi Zone in which the taximeter was disengaged
RateCodeID The final rate code in effect at the end of the trip. 1= Standard rate, 2=JFK, 3=Newark, 4=Nassau or Westchester, 5=Negotiated fare, 6=Group ride
Store_and_fwd_flag This flag indicates whether the trip record was held in vehicle memory before sending to the vendor, aka “store and forward,” because the vehicle did not have a connection to the server. Y= store and forward trip, N= not a store and forward trip
Payment_type A numeric code signifying how the passenger paid for the trip. 1= Credit card, 2= Cash, 3= No charge, 4= Dispute, 5= Unknown, 6= Voided trip
Fare_amount The time-and-distance fare calculated by the meter.
Extra Miscellaneous extras and surcharges. Currently, this only includes the $0.50 and $1 rush hour and overnight charges.
MTA_tax $0.50 MTA tax that is automatically triggered based on the metered rate in use.
Improvement_surcharge $0.30 improvement surcharge assessed trips at the flag drop. The improvement surcharge began being levied in 2015.
Tip_amount Tip amount – This field is automatically populated for credit card tips. Cash tips are not included.
Tolls_amount Total amount of all tolls paid in trip.
Total_amount The total amount charged to passengers. Does not include cash tips.

Repository structure

The pipeline contains multiple components, each organized into the following high-level subdirectories:

  • etl
  • training
  • inference

Pipeline components

Any applied ML pipeline is essentially a series of functions applied one after the other, such as data transformations, models, and output transformations. This pipeline was initially built in a lightweight fashion to run on a regular laptop with around 8 GB of RAM. The logic in these components is a first pass; there is a lot of room to improve.

The following table describes the components of this pipeline, in order:

Name Description How to run File(s)
Cleaning Reads the dataset (stored in a public S3 bucket) and performs very basic cleaning (drops rows outside the time range or with $0-valued fares) make cleaning etl/cleaning.py
Featuregen Generates basic features for the ML model make featuregen etl/featuregen.py
Split Splits the features into train and test sets make split training/split.py
Training Trains a random forest classifier on the train set and evaluates it on the test set make training training/train.py
Inference Locally serves an API that is essentially a wrapper around the predict function make serve, make inference [inference/app.py, inference/inference.py]

Data storage

The inputs and outputs for the pipeline components, as well as other artifacts, are stored in a public S3 bucket named toy-applied-ml-pipeline located in us-west-1. Read access is universal and doesn't require special permissions. Write access is limited to those with credentials. If you are interested in contributing and want write access, please contact me directly describing how you would like to be involved, and I can send you keys.

The bucket has a scratch folder, where random scratch files live. These random scratch files were likely generated by the write_file function in utils.io. The bulk of the bucket lies in the dev directory, or s3://toy-applied-ml-pipeline/dev.

The dev directory's subdirectories represent the components in the pipeline. These subdirectories contain the outputs of each component respectively, where the outputs are versioned with the timestamp the component was run. The utils.io library contains helper functions to write outputs and load the latest component output as input to another component. To inspect the filesystem structure further, you can call io.list_files(dirname), which returns the immediate files in dirname.

If you have write permissions, store your keys/ids in an .env file, and the Makefile will automatically pick it up. If you do not have write permissions, you will run into an error if you try to write to the S3 bucket.

Utils documentation

The utils directory contains helper functions and abstractions for expanding upon the current pipeline. Tests are in utils/tests.py. Note that only the io functions are tested as of now.

io

utils/io.py contains various helper functions to interface with S3. The two most useful functions are:

def load_output_df(component: str, dev: bool = True, version: str = None) -> pd.DataFrame:
  """
    This function loads the latest version of data that was produced by a component.
    Args:
        component (str): component name that we want to get the output from
        dev (bool): whether this is run in development or "production" mode
        version (str, optional): specified version of the data
    Returns:
        df (pd.DataFrame): dataframe corresponding to the data in the latest version of the output for the specified component
    """
    ...

def save_output_df(df: pd.DataFrame, component: str, dev: bool = True, overwrite: bool = False, version: str = None) -> str:
    """
    This function writes the output of a pipeline component (a dataframe) to a parquet file.
    Args:
        df (pd.DataFrame): dataframe representing the output
        component (str): name of the component that produced the output (ex: clean)
        dev (bool, optional): whether this is run in development or "production" mode
        overwrite (bool, optional): whether to overwrite a file with the same name
        version (str, optional): optional version for the output. If not specified, the function will create the version number.
    Returns:
        path (str): Full path that the file can be accessed at
    """
    ...

Note that save_output_df's default parameters are set such that you cannot overwrite an existing file. You can change this by setting overwrite = True.

Feature generators

utils.feature_generators.py contains the lightweight abstraction for a feature generator to make it easy for someone to create a new feature. The abstraction is as follows:

class FeatureGenerator(ABC):
    """Abstract class for a feature generator."""

    def __init__(self, name: str, required_columns: typing.List[str]):
        """Constructor stores the name of the feature and columns required in a df to construct that feature."""
        self.name = name
        self.required_columns = required_columns

    @abstractmethod
    def compute(self):
        pass

    @abstractmethod
    def schema(self):
        pass

See utils.feature_generators.py for examples on how to create specific feature types and etl/featuregen.py for an example on how to create the actual instances of the features themselves.

Models

utils/models.py contains the ModelWrapper abstraction. This abstraction is essentially a wrapper around a model and consists of:

  • the model binary
  • pointer to dataset(s)
  • metric values

To use this abstraction, you must create a subclass of ModelWrapper and implement the preprocess, train, predict, and score methods. The base class also provides methods to save and load the ModelWrapper object. It will fail to save if the client has not added data paths and metrics to the object.

An example of a subclass of ModelWrapper is the RandomForestModelWrapper, which is also found in utils/models.py. The RandomForestModelWrapper client usage example is in training/train.py and is partially shown below:

from utils import models

# Create and train model
mw = models.RandomForestModelWrapper(
    feature_columns=feature_columns, model_params=model_params)
mw.train(train_df, label_column)

# Score model
train_score = mw.score(train_df, label_column)
test_score = mw.score(test_df, label_column)

mw.add_data_path('train_df', train_file_path)
mw.add_data_path('test_df', test_file_path)
mw.add_metric('train_f1', train_score)
mw.add_metric('test_f1', test_score)

# Save model
print(mw.save('training/models'))

# Load latest model version
reloaded_mw = models.RandomForestModelWrapper.load('training/models')
test_preds = reloaded_mw.predict(test_df)

Roadmap

See the open issues for tickets corresponding to feature ideas. The issues in this repo are mainly tagged either data science or engineering.

Contributing

Having a toy example of an ML pipeline isn't just nice to have for people experimenting with MLOps tools. ML beginners or data science enthusiasts looking to understand how to build pipelines around ML models can also benefit from this repository.

Anyone is welcome to contribute, and your contribution is greatly appreciated! Feel free to either create issues or pull requests to address issues.

  1. Fork the repo
  2. Create your branch (git checkout -b YOUR_GITHUB_USERNAME/somefeature)
  3. Make changes and add files to the commit (git add .)
  4. Commit your changes (git commit -m 'Add something')
  5. Push to your branch (git push origin YOUR_GITHUB_USERNAME/somefeature)
  6. Make a pull request

Contact

Original author: Shreya Shankar

Email: [email protected]

Owner
Shreya Shankar
Trying to make machine learning work in the real world. Previously at @viaduct-ai, @google-research, @facebook, and @Stanford computer science.
Shreya Shankar
Creating an LSTM model to generate music

Music-Generation Creating an LSTM model to generate music music-generator Used to create basic sin wave sounds music-ai Contains the functions to conv

Jerin Joseph 2 Dec 02, 2021
CDLA: A Chinese document layout analysis (CDLA) dataset

CDLA: A Chinese document layout analysis (CDLA) dataset 介绍 CDLA是一个中文文档版面分析数据集,面向中文文献类(论文)场景。包含以下10个label: 正文 标题 图片 图片标题 表格 表格标题 页眉 页脚 注释 公式 Text Title

buptlihang 84 Dec 28, 2022
Code for the Python code smells video on the ArjanCodes channel.

7 Python code smells This repository contains the code for the Python code smells video on the ArjanCodes channel (watch the video here). The example

55 Dec 29, 2022
Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP

Wikipedia-Utils: Preprocessing Wikipedia Texts for NLP This repository maintains some utility scripts for retrieving and preprocessing Wikipedia text

Masatoshi Suzuki 44 Oct 19, 2022
KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark.

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

🤗 The largest hub of ready-to-use NLP datasets for ML models with fast, easy-to-use and efficient data manipulation tools

Hugging Face 15k Jan 02, 2023
Pre-training BERT masked language models with custom vocabulary

Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p

Stella Douka 14 Nov 02, 2022
An assignment from my grad-level data mining course demonstrating some experience with NLP/neural networks/Pytorch

NLP-Pytorch-Assignment An assignment from my grad-level data mining course (before I started personal projects) demonstrating some experience with NLP

David Thorne 0 Feb 06, 2022
🏖 Easy training and deployment of seq2seq models.

Headliner Headliner is a sequence modeling library that eases the training and in particular, the deployment of custom sequence models for both resear

Axel Springer Ideas Engineering GmbH 231 Nov 18, 2022
Python library for processing Chinese text

SnowNLP: Simplified Chinese Text Processing SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob

Rui Wang 6k Jan 02, 2023
KakaoBrain KoGPT (Korean Generative Pre-trained Transformer)

KoGPT KoGPT (Korean Generative Pre-trained Transformer) https://github.com/kakaobrain/kogpt https://huggingface.co/kakaobrain/kogpt Model Descriptions

Kakao Brain 797 Dec 26, 2022
Ecommerce product title recognition package

revizor This package solves task of splitting product title string into components, like type, brand, model and article (or SKU or product code or you

Bureaucratic Labs 16 Mar 03, 2022
A very simple framework for state-of-the-art Natural Language Processing (NLP)

A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. Flair is: A powerful NLP library. Flair allo

flair 12.3k Jan 02, 2023
Practical Machine Learning with Python

Master the essential skills needed to recognize and solve complex real-world problems with Machine Learning and Deep Learning by leveraging the highly popular Python Machine Learning Eco-system.

Dipanjan (DJ) Sarkar 2k Jan 08, 2023
LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation

LOT: A Benchmark for Evaluating Chinese Long Text Understanding and Generation Tasks | Datasets | LongLM | Baselines | Paper Introduction LOT is a ben

46 Dec 28, 2022
Concept Modeling: Topic Modeling on Images and Text

Concept is a technique that leverages CLIP and BERTopic-based techniques to perform Concept Modeling on images.

Maarten Grootendorst 120 Dec 27, 2022
Understand Text Summarization and create your own summarizer in python

Automatic summarization is the process of shortening a text document with software, in order to create a summary with the major points of the original document. Technologies that can make a coherent

Sreekanth M 1 Oct 18, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task

DomainWordsDict, Chinese words dict that contains more than 68 domains, which can be used as text classification、knowledge enhance task。涵盖68个领域、共计916万词的专业词典知识库,可用于文本分类、知识增强、领域词汇库扩充等自然语言处理应用。

liuhuanyong 357 Dec 24, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

537 Jan 05, 2023