Discovering Interpretable GAN Controls [NeurIPS 2020]

Overview

GANSpace: Discovering Interpretable GAN Controls

Python 3.7 PyTorch 1.3 Open In Colab teaser

Figure 1: Sequences of image edits performed using control discovered with our method, applied to three different GANs. The white insets specify the particular edits using notation explained in Section 3.4 ('Layer-wise Edits').

GANSpace: Discovering Interpretable GAN Controls
Erik Härkönen1,2, Aaron Hertzmann2, Jaakko Lehtinen1,3, Sylvain Paris2
1Aalto University, 2Adobe Research, 3NVIDIA
https://arxiv.org/abs/2004.02546

Abstract: This paper describes a simple technique to analyze Generative Adversarial Networks (GANs) and create interpretable controls for image synthesis, such as change of viewpoint, aging, lighting, and time of day. We identify important latent directions based on Principal Components Analysis (PCA) applied in activation space. Then, we show that interpretable edits can be defined based on layer-wise application of these edit directions. Moreover, we show that BigGAN can be controlled with layer-wise inputs in a StyleGAN-like manner. A user may identify a large number of interpretable controls with these mechanisms. We demonstrate results on GANs from various datasets.

Video: https://youtu.be/jdTICDa_eAI

Setup

See the setup instructions.

Usage

This repository includes versions of BigGAN, StyleGAN, and StyleGAN2 modified to support per-layer latent vectors.

Interactive model exploration

# Explore BigGAN-deep husky
python interactive.py --model=BigGAN-512 --class=husky --layer=generator.gen_z -n=1_000_000

# Explore StyleGAN2 ffhq in W space
python interactive.py --model=StyleGAN2 --class=ffhq --layer=style --use_w -n=1_000_000 -b=10_000

# Explore StyleGAN2 cars in Z space
python interactive.py --model=StyleGAN2 --class=car --layer=style -n=1_000_000 -b=10_000
# Apply previously saved edits interactively
python interactive.py --model=StyleGAN2 --class=ffhq --layer=style --use_w --inputs=out/directions

Visualize principal components

# Visualize StyleGAN2 ffhq W principal components
python visualize.py --model=StyleGAN2 --class=ffhq --use_w --layer=style -b=10_000

# Create videos of StyleGAN wikiart components (saved to ./out)
python visualize.py --model=StyleGAN --class=wikiart --use_w --layer=g_mapping -b=10_000 --batch --video

Options

Command line paramaters:
  --model      one of [ProGAN, BigGAN-512, BigGAN-256, BigGAN-128, StyleGAN, StyleGAN2]
  --class      class name; leave empty to list options
  --layer      layer at which to perform PCA; leave empty to list options
  --use_w      treat W as the main latent space (StyleGAN / StyleGAN2)
  --inputs     load previously exported edits from directory
  --sigma      number of stdevs to use in visualize.py
  -n           number of PCA samples
  -b           override automatic minibatch size detection
  -c           number of components to keep

Reproducibility

All figures presented in the main paper can be recreated using the included Jupyter notebooks:

  • Figure 1: figure_teaser.ipynb
  • Figure 2: figure_pca_illustration.ipynb
  • Figure 3: figure_pca_cleanup.ipynb
  • Figure 4: figure_style_content_sep.ipynb
  • Figure 5: figure_supervised_comp.ipynb
  • Figure 6: figure_biggan_style_resampling.ipynb
  • Figure 7: figure_edit_zoo.ipynb

Known issues

  • The interactive viewer sometimes freezes on startup on Ubuntu 18.04. The freeze is resolved by clicking on the terminal window and pressing the control key. Any insight into the issue would be greatly appreciated!

Integrating a new model

  1. Create a wrapper for the model in models/wrappers.py using the BaseModel interface.
  2. Add the model to get_model() in models/wrappers.py.

Importing StyleGAN checkpoints from TensorFlow

It is possible to import trained StyleGAN and StyleGAN2 weights from TensorFlow into GANSpace.

StyleGAN

  1. Install TensorFlow: conda install tensorflow-gpu=1.*.
  2. Modify methods __init__(), load_model() in models/wrappers.py under class StyleGAN.

StyleGAN2

  1. Follow the instructions in models/stylegan2/stylegan2-pytorch/README.md. Make sure to use the fork in this specific folder when converting the weights for compatibility reasons.
  2. Save the converted checkpoint as checkpoints/stylegan2/<dataset>_<resolution>.pt.
  3. Modify methods __init__(), download_checkpoint() in models/wrappers.py under class StyleGAN2.

Acknowledgements

We would like to thank:

  • The authors of the PyTorch implementations of BigGAN, StyleGAN, and StyleGAN2:
    Thomas Wolf, Piotr Bialecki, Thomas Viehmann, and Kim Seonghyeon.
  • Joel Simon from ArtBreeder for providing us with the landscape model for StyleGAN.
    (unfortunately we cannot distribute this model)
  • David Bau and colleagues for the excellent GAN Dissection project.
  • Justin Pinkney for the Awesome Pretrained StyleGAN collection.
  • Tuomas Kynkäänniemi for giving us a helping hand with the experiments.
  • The Aalto Science-IT project for providing computational resources for this project.

Citation

@inproceedings{härkönen2020ganspace,
  title     = {GANSpace: Discovering Interpretable GAN Controls},
  author    = {Erik Härkönen and Aaron Hertzmann and Jaakko Lehtinen and Sylvain Paris},
  booktitle = {Proc. NeurIPS},
  year      = {2020}
}

License

The code of this repository is released under the Apache 2.0 license.
The directory netdissect is a derivative of the GAN Dissection project, and is provided under the MIT license.
The directories models/biggan and models/stylegan2 are provided under the MIT license.

Owner
Erik Härkönen
PhD student at Aalto University
Erik Härkönen
Rust bindings for the C++ api of PyTorch.

tch-rs Rust bindings for the C++ api of PyTorch. The goal of the tch crate is to provide some thin wrappers around the C++ PyTorch api (a.k.a. libtorc

Laurent Mazare 2.3k Dec 30, 2022
Rocket-recycling with Reinforcement Learning

Rocket-recycling with Reinforcement Learning Developed by: Zhengxia Zou I have long been fascinated by the recovery process of SpaceX rockets. In this

Zhengxia Zou 202 Jan 03, 2023
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
IJCAI2020 & IJCV 2020 :city_sunrise: Unsupervised Scene Adaptation with Memory Regularization in vivo

Seg_Uncertainty In this repo, we provide the code for the two papers, i.e., MRNet:Unsupervised Scene Adaptation with Memory Regularization in vivo, IJ

Zhedong Zheng 348 Jan 05, 2023
Hardware accelerated, batchable and differentiable optimizers in JAX.

JAXopt Installation | Examples | References Hardware accelerated (GPU/TPU), batchable and differentiable optimizers in JAX. Installation JAXopt can be

Google 621 Jan 08, 2023
Tensorflow implementation of "Learning Deep Features for Discriminative Localization"

Weakly_detector Tensorflow implementation of "Learning Deep Features for Discriminative Localization" B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and

Taeksoo Kim 363 Jun 29, 2022
CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss

CAMoE + Dual SoftMax Loss (DSL): Improving Video-Text Retrieval by Multi-Stream Corpus Alignment and Dual Softmax Loss This is official implement of "

程星 87 Dec 24, 2022
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
This project implements "virtual speed" from heart rate monito

ANT+ Virtual Stride Based Speed and Distance Monitor Overview This project imple

2 May 20, 2022
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
v objective diffusion inference code for PyTorch.

v-diffusion-pytorch v objective diffusion inference code for PyTorch, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The

Katherine Crowson 635 Dec 30, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

2 Aug 05, 2022
[ICCV2021] 3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds

3DVG-Transformer This repository is for the ICCV 2021 paper "3DVG-Transformer: Relation Modeling for Visual Grounding on Point Clouds" Our method "3DV

22 Dec 11, 2022
Generate Contextual Directory Wordlist For Target Org

PathPermutor Generate Contextual Directory Wordlist For Target Org This script generates contextual wordlist for any target org based on the set of UR

8 Jun 23, 2021
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
Vehicle direction identification consists of three module detection , tracking and direction recognization.

Vehicle-direction-identification Vehicle direction identification consists of three module detection , tracking and direction recognization. Algorithm

5 Nov 15, 2022
On Generating Extended Summaries of Long Documents

ExtendedSumm This repository contains the implementation details and datasets used in On Generating Extended Summaries of Long Documents paper at the

Georgetown Information Retrieval Lab 76 Sep 05, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023