Towards uncontrained hand-object reconstruction from RGB videos

Related tags

Deep Learninghoman
Overview

Towards uncontrained hand-object reconstruction from RGB videos

drawingdrawingdrawing

Yana Hasson, Gül Varol, Ivan Laptev and Cordelia Schmid

Table of Content

Demo

Open In Colab

Setup

Environment setup

Note that you will need a reasonably recent GPU to run this code.

We recommend using a conda environment:

conda env create -f environment.yml
conda activate phosa16

External Dependencies

Detectron2, NMR, FrankMocap

mkdir -p external
git clone --branch v0.2.1 https://github.com/facebookresearch/detectron2.git external/detectron2
pip install external/detectron2
mkdir -p external
git clone https://github.com/hassony2/multiperson.git external/multiperson
pip install external/multiperson/neural_renderer
cd external/multiperson/sdf
pip install external/multiperson/sdf
mkdir -p external
git clone https://github.com/hassony2/frankmocap.git external/frankmocap
sh scripts/install_frankmocap.sh

Install MANO

Follow the instructions below to install MANO
  • Go to MANO website: http://mano.is.tue.mpg.de/
  • Create an account by clicking *Sign Up* and provide your information
  • Download Models and Code (the downloaded file should have the format mano_v*_*.zip). Note that all code and data from this download falls under the MANO license (see http://mano.is.tue.mpg.de/license).
  • Unzip and copy the content of the *models* folder into the extra_data/mano folder

Install SMPL-X

Follow the instructions below to install SMPL-X

Download datasets

HO-3D

Download the dataset following the instructions on the official project webpage.

This code expects to find the ho3d root folder at local_data/datasets/ho3d

Core50

Follow instructions below to setup the Core50 dataset
  • Download the Object models from ShapeNetCorev2
    • Go to https://shapenet.org and create an account
    • Go to the download ShapeNet page
    • You will need the "Archive of ShapeNetCore v2 release" (~25GB)
    • unzip to local_data folder by adapting the command
      • unzip /path/to/ShapeNetCore.v2.zip -d local_data/datasets/ShapeNetCore.v2/

Running the Code

Check installation

Make sure your file structure after completing all the Setup steps, your file structure in the homan folder looks like this.

# Installed datasets
local_data/
  datasets/
    ho3d/
    core50/
    ShapeNetCore.v2/
    epic/
# Auxiliary data needed to run the code
extra_data/
  # MANO data files
  mano/
    MANO_RIGHT.pkl
    ...
  smpl/
    SMPLX_NEUTRAL.pkl

Start fitting

Core50

Step 1

  • Pre-processing images
  • Joint optimization with coarse interaction terms
python fit_vid_dataset.py --dataset core50 --optimize_object_scale 0 --result_root results/core50/step1

Step 2

  • Joint optimization refinement
python fit_vid_dataset.py --dataset core50 --split test --lw_collision 0.001 --lw_contact 1 --optimize_object_scale 0 --result_root results/core50/step2 --resume results/core50/step1

HO3d

Step 1

  • Pre-processing images
  • Joint optimization with coarse interaction terms
python fit_vid_dataset.py --dataset ho3d --split test --optimize_object_scale 0 --result_root results/ho3d/step1

Step 2

  • Joint optimization refinement
python fit_vid_dataset.py --dataset ho3d --split test --lw_collision 0.001 --lw_contact 1 --optimize_object_scale 0 --result_root results/ho3d/step2 --resume results/ho3d/step1

Acknowledgements

PHOSA

The code for this project is heavily based on and influenced by Perceiving 3D Human-Object Spatial Arrangements from a Single Image in the Wild (PHOSA)] by Jason Y. Zhang*, Sam Pepose*, Hanbyul Joo, Deva Ramanan, Jitendra Malik, and Angjoo Kanazawa, ECCV 2020

Consider citing their work !

@InProceedings{zhang2020phosa,
    title = {Perceiving 3D Human-Object Spatial Arrangements from a Single Image in the Wild},
    author = {Zhang, Jason Y. and Pepose, Sam and Joo, Hanbyul and Ramanan, Deva and Malik, Jitendra and Kanazawa, Angjoo},
    booktitle = {European Conference on Computer Vision (ECCV)},
    year = {2020},
}

Funding

This work was funded in part by the MSR-Inria joint lab, the French government under management of Agence Nationale de la Recherche as part of the ”Investissements d’avenir” program, reference ANR19-P3IA-0001 (PRAIRIE 3IA Institute) and by Louis Vuitton ENS Chair on Artificial Intelligence.

Other references

If you find this work interesting, you will certainly be also interested in the following publication:

To keep track of recent publications take a look at awesome-hand-pose-estimation by Xinghao Chen.

License

Note that our code depends on other libraries, including SMPL, SMPL-X, MANO which each have their own respective licenses that must also be followed.

Owner
Yana
PhD student at Inria Paris, focusing on action recognition in first person videos
Yana
Image augmentation library in Python for machine learning.

Augmentor is an image augmentation library in Python for machine learning. It aims to be a standalone library that is platform and framework independe

Marcus D. Bloice 4.8k Jan 07, 2023
IDRLnet, a Python toolbox for modeling and solving problems through Physics-Informed Neural Network (PINN) systematically.

IDRLnet IDRLnet is a machine learning library on top of PyTorch. Use IDRLnet if you need a machine learning library that solves both forward and inver

IDRL 105 Dec 17, 2022
Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs

Implementation for the paper: Probabilistic Entity Representation Model for Reasoning over Knowledge Graphs, Nurendra Choudhary, Nikhil Rao, Sumeet Ka

Nurendra Choudhary 8 Nov 15, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework

Google Cloud Platform 792 Dec 28, 2022
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
MAU: A Motion-Aware Unit for Video Prediction and Beyond, NeurIPS2021

MAU (NeurIPS2021) Zheng Chang, Xinfeng Zhang, Shanshe Wang, Siwei Ma, Yan Ye, Xinguang Xiang, Wen GAo. Official PyTorch Code for "MAU: A Motion-Aware

ZhengChang 20 Nov 25, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021
Robust fine-tuning of zero-shot models

Robust fine-tuning of zero-shot models This repository contains code for the paper Robust fine-tuning of zero-shot models by Mitchell Wortsman*, Gabri

224 Dec 29, 2022
A Keras implementation of CapsNet in the paper: Sara Sabour, Nicholas Frosst, Geoffrey E Hinton. Dynamic Routing Between Capsules

NOTE This implementation is fork of https://github.com/XifengGuo/CapsNet-Keras , applied to IMDB texts reviews dataset. CapsNet-Keras A Keras implemen

Lauro Moraes 5 Oct 23, 2022
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
Official Pytorch implementation of ICLR 2018 paper Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge.

Deep Learning for Physical Processes: Integrating Prior Scientific Knowledge: Official Pytorch implementation of ICLR 2018 paper Deep Learning for Phy

emmanuel 47 Nov 06, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
A user-friendly research and development tool built to standardize RL competency assessment for custom agents and environments.

Built with ❤️ by Sam Showalter Contents Overview Installation Dependencies Usage Scripts Standard Execution Environment Development Environment Benchm

SRI-AIC 1 Nov 18, 2021
PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

PyTorch implementation of NeurIPS 2021 paper: "CoFiNet: Reliable Coarse-to-fine Correspondences for Robust Point Cloud Registration"

76 Jan 03, 2023