The official PyTorch implementation for the paper "sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs".

Overview

Magnetic Graph Convolutional Networks

The Magnetic Eigenmap

A directed 4-cycle

About

The official PyTorch implementation for the paper sMGC: A Complex-Valued Graph Convolutional Network via Magnetic Laplacian for Directed Graphs.

Requirements

To install requirements:

pip3 install -r requirements.txt

Results

Node classification accuracy in Citation networks (%)

Model CoRA CiteSeer PubMed
GAT 82.60 ± 0.40 70.45 ± 0.25 77.45 ± 0.45
sMGC 82.70 ± 0.00 73.30 ± 0.00 79.90 ± 0.10
MGC 82.50 ± 1.00 71.25 ± 0.95 79.70 ± 0.40

Node classification accuracy in WebKB (%)

Model Cornell Texas Washington Wisconsin
GAT 41.03 ± 0.00 52.63 ± 2.63 63.04 ± 0.00 56.61 ± 1.88
sMGC 73.08 ± 1.28 71.05 ± 0.00 68.48 ± 3.26 80.19 ± 2.83
MGC 80.77 ± 3.85 82.90 ± 1.31 70.66 ± 1.08 87.74 ± 2.83

Reproduce experiment results

sMGC

CoRA:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cora.ini' --alpha=0.03 --t=8.05 --K=38

CiteSeer:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/citeseer.ini' --alpha=0.01 --t=5.16 --K=40

PubMed:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/pubmed.ini' --alpha=0.01 --t=5.95 --K=25

Cornell:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cornell.ini' --alpha=0.95 --t=45.32 --K=12

Texas:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/texas.ini' --alpha=0.71 --t=45.08 --K=23

Washington:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/washington.ini' --alpha=0.77 --t=45.95 --K=44

Wisconsin:

python3 main_smgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/wisconsin.ini' --alpha=0.93 --t=25.76 --K=34

MGC

CoRA:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cora.ini' --alpha=0.08 --t=5.85 --K=10 --droprate=0.4

CiteSeer:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/citeseer.ini' --alpha=0.01 --t=25.95 --K=35 --droprate=0.3

PubMed:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/pubmed.ini' --alpha=0.03 --t=15.95 --K=20 --droprate=0.5

Cornell:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/cornell.ini' --alpha=0.66 --t=38.49 --K=31 --droprate=0.6

Texas:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/texas.ini' --alpha=0.75 --t=0.53 --K=4 --droprate=0.5

Washington:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/washington.ini' --alpha=0.73 --t=42.36 --K=21 --droprate=0.1

Wisconsin:

python3 main_mgc.py --mode='test' --seed=100 --dataset_config_path='./config/data/wisconsin.ini' --alpha=0.34 --t=0.52 --K=12 --droprate=0.5
Owner
What we know is a drop. What we do not know is an ocean.
TinyML Cookbook, published by Packt

TinyML Cookbook This is the code repository for TinyML Cookbook, published by Packt. Author: Gian Marco Iodice Publisher: Packt About the book This bo

Packt 93 Dec 29, 2022
Predictive AI layer for existing databases.

MindsDB is an open-source AI layer for existing databases that allows you to effortlessly develop, train and deploy state-of-the-art machine learning

MindsDB Inc 12.2k Jan 03, 2023
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
Autoencoder - Reducing the Dimensionality of Data with Neural Network

autoencoder Implementation of the Reducing the Dimensionality of Data with Neural Network – G. E. Hinton and R. R. Salakhutdinov paper. Notes Aim to m

Jordan Burgess 13 Nov 17, 2022
Repo for Photon-Starved Scene Inference using Single Photon Cameras, ICCV 2021

Photon-Starved Scene Inference using Single Photon Cameras ICCV 2021 Arxiv Project Video Bhavya Goyal, Mohit Gupta University of Wisconsin-Madison Abs

Bhavya Goyal 5 Nov 15, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides

Predicting Axillary Lymph Node Metastasis in Early Breast Cancer Using Deep Learning on Primary Tumor Biopsy Slides Project | This repo is the officia

CVSM Group - email: <a href=[email protected]"> 33 Dec 28, 2022
Official implementation of "Articulation Aware Canonical Surface Mapping"

Articulation-Aware Canonical Surface Mapping Nilesh Kulkarni, Abhinav Gupta, David F. Fouhey, Shubham Tulsiani Paper Project Page Requirements Python

Nilesh Kulkarni 56 Dec 16, 2022
Implementation of " SESS: Self-Ensembling Semi-Supervised 3D Object Detection" (CVPR2020 Oral)

SESS: Self-Ensembling Semi-Supervised 3D Object Detection Created by Na Zhao from National University of Singapore Introduction This repository contai

125 Dec 23, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Global-Local Attention for Emotion Recognition

Global-Local Attention for Emotion Recognition Requirements Python 3 Install tensorflow (or tensorflow-gpu) = 2.0.0 Install some other packages pip i

Minh Nhat Le 15 Apr 21, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Distributed Asynchronous Hyperparameter Optimization better than HyperOpt.

UltraOpt : Distributed Asynchronous Hyperparameter Optimization better than HyperOpt. UltraOpt is a simple and efficient library to minimize expensive

98 Aug 16, 2022
Implementation of ViViT: A Video Vision Transformer

ViViT: A Video Vision Transformer Unofficial implementation of ViViT: A Video Vision Transformer. Notes: This is in WIP. Model 2 is implemented, Model

Rishikesh (ऋषिकेश) 297 Jan 06, 2023
This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

This is the source code for: Context-aware Entity Typing in Knowledge Graphs.

9 Sep 01, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
Hysterese plugin with two temperature offset areas

craftbeerpi4 plugin OffsetHysterese Temperatur-Steuerungs-Plugin mit zwei tempereaturbereich abhängigen Offsets. Installation sudo pip3 install https:

HappyHibo 1 Dec 21, 2021
Graph Representation Learning via Graphical Mutual Information Maximization

GMI (Graphical Mutual Information) Graph Representation Learning via Graphical Mutual Information Maximization (Peng Z, Huang W, Luo M, et al., WWW 20

93 Dec 29, 2022
Ladder Variational Autoencoders (LVAE) in PyTorch

Ladder Variational Autoencoders (LVAE) PyTorch implementation of Ladder Variational Autoencoders (LVAE) [1]: where the variational distributions q at

Andrea Dittadi 63 Dec 22, 2022