Chatbot in 200 lines of code using TensorLayer

Overview

Seq2Seq Chatbot

This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code:

Prerequisites

Model


Training

python3 main.py

Results

Query > happy birthday have a nice day
 > thank you so much
 > thank babe
 > thank bro
 > thanks so much
 > thank babe i appreciate it
Query > donald trump won last nights presidential debate according to snap online polls
 > i dont know what the fuck is that
 > i think he was a racist
 > he is not a racist
 > he is a liar
 > trump needs to be president
Comments
  • [WIP] Fix error in PR #16 Inference mode and TF compatibility

    [WIP] Fix error in PR #16 Inference mode and TF compatibility

    Hey @pskrunner14

    Thanks for the great PR! We have rolled back the PR you recently submitted as the PR contains the error. Could you please have a look on it and we can merge it again? You can create a PR from your fork again or directly modify from here.

    Cheers, Luo

    opened by luomai 6
  • No module named 'tensorlayer.models.seq2seq'

    No module named 'tensorlayer.models.seq2seq'

    Can someone share with me how to resolve this error? Thanks.

    Traceback (most recent call last): File "D:\ChatBot\seq2seq-chatbot-master\main.py", line 11, in from tensorlayer.models.seq2seq import Seq2seq ModuleNotFoundError: No module named 'tensorlayer.models.seq2seq'

    opened by geongm 5
  • Change seq2seq import names

    Change seq2seq import names

    Had the #37 problem. It looks like on in current version of tensorlayer import names changed.

    These imports work with tensorflow 2.0.0-beta1 tensorlayer 2.1.0

    opened by egens 4
  • TL2.0

    TL2.0

    Update model compatible with TensorLayer2.0. Rewrite the loss. cross_entropy_seq_with_mask and cross_entropy_seq. Need to run to see if it converges and produce desirable results

    opened by ArnoldLIULJ 3
  • Inference mode and TF compatibility

    Inference mode and TF compatibility

    • Moved Inference code to a function.
    • Added optional arguments including running script in inference mode [usage python main.py --help].
    • Added tqdm progress bar for info while training.
    • Made the code compatible with TF v1.10.0 and TL v1.10.1.
    • Changed tf.contrib.rnn.BasicLSTMCell to tf.nn.rnn_cell.LSTMCell since the former is deprecated.
    • Moved session config to global scope.
    • Refactored code into relevant functions and reordered them so that the higher-level ones appear earlier in the code.
    • Renamed script to main.py for ease of use.
    • Updated README to add training and inference usage commands.
    • Added requirements.txt file.
    • Changed n.npz to model.npz since it is more standard.

    Note: Fixes #12 and #15

    opened by pskrunner14 3
  • Using the Chatbot

    Using the Chatbot

    Hi there,

    I trained the data for a few days and now the samples are returning good results to the predefined "Happy Birthday" and "Trump" requests.

    Great job by you. Thanks so far.

    Do you already have a small python program for using the chatbot? If I write a message, the chatbot should return a single answer.

    Thanks Chris

    opened by cpro90 3
  • Training is taking too much time

    Training is taking too much time

    Training on CPU is taking too much time, so do you have any estimate how much time it will take? I have executed this 12 hours ago and now i am on just "Epoch[2/50] step:[600/2852] loss:5.684645 took:9.62770s". Can you please help me to boost this training.

    opened by aqeellegalinc 3
  • Inference mode and TF compatibility (#16)

    Inference mode and TF compatibility (#16)

    @pskrunner14

    We have rolled back the PR you recently submitted as the PR contains the error. Could you please have a look on it and we can merge it again?

    opened by luomai 2
  • Fixes TL global variables initializer deprecated issue and Code readability

    Fixes TL global variables initializer deprecated issue and Code readability

    Fixed TensorLayer initialize global vars deprecated issue #13, changed learning rate to 0.001 for faster convergence, improved code readability and removed redundant comments and code

    opened by pskrunner14 2
  • Can't import data

    Can't import data

    ModuleNotFoundError Traceback (most recent call last) in () 8 9 ###============= prepare data ---> 10 from data.twitter import data 11 metadata, idx_q, idx_a = data.load_data(PATH='data/twitter/') # Twitter 12 # from data.cornell_corpus import data

    ModuleNotFoundError: No module named 'data.twitter'

    opened by georgexli 2
  • No module named twitter

    No module named twitter

    File "main_simple_seq2seq.py", line 18, in from data.twitter import data ImportError: No module named twitter

    Did I miss some files? Can you please help me?Many thanks^ o^

    opened by MProtoss 1
  • ModuleNotFoundError: No module named 'data.twitter'; 'data' is not a package

    ModuleNotFoundError: No module named 'data.twitter'; 'data' is not a package

    I am trying to write code for Chat Box, but encountering the error "ModuleNotFoundError: No module named 'data.twitter'; 'data' is not a package" when trying to execute "from data.twitter import data".

    Please suggest , how to resolve the issue?

    note: I am working on following environment: Python is 3.6 V Tensorflow : 2.0 Tensorlayer: 2.2 python-twitter

    opened by mhmitalihalder 0
  • How could I get the

    How could I get the "thought vector" using TensorLayer?

    I am using the seq2seq model as an autoencoder. Given a test paragraph, I'd like to get the thought vector (using the terminology in the figure of README.md).

    opened by munichong 0
Releases(0.1)
Owner
TensorLayer Community
A neutral open community to promote AI technology.
TensorLayer Community
Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression

Alpha-IoU: A Family of Power Intersection over Union Losses for Bounding Box Regression YOLOv5 with alpha-IoU losses implemented in PyTorch. Example r

Jacobi(Jiabo He) 147 Dec 05, 2022
Alternatives to Deep Neural Networks for Function Approximations in Finance

Alternatives to Deep Neural Networks for Function Approximations in Finance Code companion repo Overview This is a repository of Python code to go wit

15 Dec 17, 2022
Code accompanying the paper on "An Empirical Investigation of Domain Generalization with Empirical Risk Minimizers" published at NeurIPS, 2021

Code for "An Empirical Investigation of Domian Generalization with Empirical Risk Minimizers" (NeurIPS 2021) Motivation and Introduction Domain Genera

Meta Research 15 Dec 27, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
3D-Reconstruction 基于深度学习方法的单目多视图三维重建

基于深度学习方法的单目多视图三维重建 Part I 三维重建 代码:Part1 技术文档:[Markdown] [PDF] 原始图像:Original Images 点云结果:Point Cloud Results-1

HMT_Curo 19 Dec 26, 2022
Rethinking Portrait Matting with Privacy Preserving

Rethinking Portrait Matting with Privacy Preserving This is the official repository of the paper Rethinking Portrait Matting with Privacy Preserving.

184 Jan 03, 2023
Differential fuzzing for the masses!

NEZHA NEZHA is an efficient and domain-independent differential fuzzer developed at Columbia University. NEZHA exploits the behavioral asymmetries bet

147 Dec 05, 2022
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
Python Wrapper for Embree

pyembree Python Wrapper for Embree Installation You can install pyembree (and embree) via the conda-forge package. $ conda install -c conda-forge pyem

Anthony Scopatz 67 Dec 24, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
[CVPR 2021] Unsupervised 3D Shape Completion through GAN Inversion

ShapeInversion Paper Junzhe Zhang, Xinyi Chen, Zhongang Cai, Liang Pan, Haiyu Zhao, Shuai Yi, Chai Kiat Yeo, Bo Dai, Chen Change Loy "Unsupervised 3D

100 Dec 22, 2022
A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN

A Pytorch Implementation of Source Data-free Domain Adaptation for a Faster R-CNN Please follow Faster R-CNN and DAF to complete the environment confi

2 Jan 12, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Implementation of TabTransformer, attention network for tabular data, in Pytorch

Tab Transformer Implementation of Tab Transformer, attention network for tabular data, in Pytorch. This simple architecture came within a hair's bread

Phil Wang 420 Jan 05, 2023
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
Code for "PVNet: Pixel-wise Voting Network for 6DoF Pose Estimation" CVPR 2019 oral

Good news! We release a clean version of PVNet: clean-pvnet, including how to train the PVNet on the custom dataset. Use PVNet with a detector. The tr

ZJU3DV 722 Dec 27, 2022
Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds."

DeltaConv [Paper] [Project page] Code for the SIGGRAPH 2022 paper "DeltaConv: Anisotropic Operators for Geometric Deep Learning on Point Clouds" by Ru

98 Nov 26, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022