Implementation of the "Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos" paper.

Overview

Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos

Introduction

Point cloud videos exhibit irregularities and lack of order along the spatial dimension where points emerge inconsistently across different frames. To capture the dynamics in point cloud videos, point tracking is usually employed. However, as points may flow in and out across frames, computing accurate point trajectories is extremely difficult. Moreover, tracking usually relies on point colors and thus may fail to handle colorless point clouds. In this paper, to avoid point tracking, we propose a novel Point 4D Transformer (P4Transformer) network to model raw point cloud videos. Specifically, P4Transformer consists of (i) a point 4D convolution to embed the spatio-temporal local structures presented in a point cloud video and (ii) a transformer to capture the appearance and motion information across the entire video by performing self-attention on the embedded local features. In this fashion, related or similar local areas are merged with attention weight rather than by explicit tracking.

Installation

The code is tested with Red Hat Enterprise Linux Workstation release 7.7 (Maipo), g++ (GCC) 8.3.1, PyTorch (both v1.4.0 and v1.8.1 are supported), CUDA 10.2 and cuDNN v7.6.

Compile the CUDA layers for PointNet++, which we used for furthest point sampling (FPS) and radius neighbouring search:

mv modules-pytorch-1.4.0/modules-pytorch-1.8.1 modules
cd modules
python setup.py install

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{fan21p4transformer,
  author    = {Hehe Fan and
               Yi Yang and
               Mohan Kankanhalli},
  title     = {Point 4D Transformer Networks for Spatio-Temporal Modeling in Point Cloud Videos},
  booktitle = {{IEEE/CVF} Conference on Computer Vision and Pattern Recognition, {CVPR}},
  year      = {2021}
}

Related Repos

  1. PointNet++ PyTorch implementation: https://github.com/facebookresearch/votenet/tree/master/pointnet2
  2. MeteorNet: https://github.com/xingyul/meteornet
  3. 3DV: https://github.com/3huo/3DV-Action
  4. PSTNet: https://github.com/hehefan/Point-Spatio-Temporal-Convolution
  5. Transformer: https://github.com/lucidrains/vit-pytorch
  6. PointRNN (TensorFlow implementation): https://github.com/hehefan/PointRNN
  7. PointRNN (PyTorch implementation): https://github.com/hehefan/PointRNN-PyTorch
Owner
Hehe Fan
Research fellow at the National University of Singapore.
Hehe Fan
Code for "Universal inference meets random projections: a scalable test for log-concavity"

How to use this repository This repository contains code to replicate the results of "Universal inference meets random projections: a scalable test fo

Robin Dunn 0 Nov 21, 2021
JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022
Pseudo-mask Matters in Weakly-supervised Semantic Segmentation

Pseudo-mask Matters in Weakly-supervised Semantic Segmentation By Yi Li, Zhanghui Kuang, Liyang Liu, Yimin Chen, Wayne Zhang SenseTime, Tsinghua Unive

33 Oct 14, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
SeqAttack: a framework for adversarial attacks on token classification models

A framework for adversarial attacks against token classification models

Walter 23 Nov 25, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Official code implementation for "Personalized Federated Learning using Hypernetworks"

Personalized Federated Learning using Hypernetworks This is an official implementation of Personalized Federated Learning using Hypernetworks paper. [

Aviv Shamsian 121 Dec 25, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

To model the probability of a soccer coach leave his/her team during Campeonato Brasileiro for 10 chosen teams and considering years 2018, 2019 and 2020.

Larissa Sayuri Futino Castro dos Santos 1 Jan 20, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021]

SSD: A Unified Framework for Self-Supervised Outlier Detection [ICLR 2021] Pdf: https://openreview.net/forum?id=v5gjXpmR8J Code for our ICLR 2021 pape

Princeton INSPIRE Research Group 113 Nov 27, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022
Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation.

Unified-EPT Code for the ICCV 2021 Workshop paper: A Unified Efficient Pyramid Transformer for Semantic Segmentation. Installation Linux, CUDA=10.0,

29 Aug 23, 2022
This is the official implement of paper "ActionCLIP: A New Paradigm for Action Recognition"

This is an official pytorch implementation of ActionCLIP: A New Paradigm for Video Action Recognition [arXiv] Overview Content Prerequisites Data Prep

268 Jan 09, 2023
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022