虚拟货币(BTC、ETH)炒币量化系统项目。在一版本的基础上加入了趋势判断

Overview

🎉 第二版本 🎉 (现货趋势网格)


介绍

在第一版本的基础上

趋势判断,不在固定点位开单,选择更优的开仓点位

优势: 🎉

  1. 简单易上手
  2. 安全(不用将api_secret告诉他人)

如何启动

  1. 修改app目录下的authorization文件
api_key='你的key'
api_secret='你的secret'

dingding_token = '申请钉钉群助手的token'   # 强烈建议您使用 (若不会申请,请加我个人微信)

如果你还没有币安账号: 注册页面交易返佣40%(系统返佣20%,id私发给我,微信每周返佣20%,长期有效)

免翻墙地址

申请api_key地址: 币安API管理页面

  1. 修改data/data.json配置文件 根据
{
    "runBet": {
        "next_buy_price": 350,      <- 下次开仓价   (你下一仓位买入价)
      
        "grid_sell_price": 375      <- 当前止盈价  (你的当前仓位卖出价)
        "step":0                    <- 当前仓位  (0:仓位为空)
    },
    "config": {
        "profit_ratio": 5,         <- 止盈比率      (卖出价调整比率。如:设置为5,当前买入价为100,那么下次卖出价为105)
        "double_throw_ratio": 5,   <- 补仓比率      (买入价调整比率。如:设置为5,当前买入价为100,那么下次买入价为95)
        "cointype": "ETHUSDT",     <- 交易对        (你要进行交易的交易对,请参考币安现货。如:BTC 填入 BTC/USDT)
        "quantity": [1,2,3]        <- 交易数量       (第一手买入1,第二手买入2...超过第三手以后的仓位均按照最后一位数量(3)买入)
        
    }
}

  1. 安装依赖包 ''' pip install requests json '''
  2. 运行主文件
# python eth-run.py 这是带有钉钉通知的主文件(推荐使用钉钉模式启动👍)

注意事项(一定要看)

  • 由于交易所的api在大陆无法访问(如果没有条件,可以使用api.binance.cc)
    • 您需要选择修改binanceAPI.py文件
# 修改为cc域名
class BinanceAPI(object):
    BASE_URL = "https://www.binance.cc/api/v1"
    FUTURE_URL = "https://fapi.binance.cc"
    BASE_URL_V3 = "https://api.binance.cc/api/v3"
    PUBLIC_URL = "https://www.binance.cc/exchange/public/product"
  • 如果您使用的交易所为币安,那么请保证账户里有足够的bnb

    • 手续费足够低
    • 确保购买的币种完整(如果没有bnb,比如购买1个eth,其中你只会得到0.999。其中0.001作为手续费支付了)
  • 第一版本现货账户保证有足够的U

  • 由于补仓比率是动态的,目前默认最小为5%。如果您认为过大,建议您修改文件夹data下的RunbetData.py文件

    def set_ratio(self,symbol):
        '''修改补仓止盈比率'''
        data_json = self._get_json_data()
        ratio_24hr = binan.get_ticker_24hour(symbol) #
        index = abs(ratio_24hr)

        if abs(ratio_24hr) >  **6** : # 今日24小时波动比率
            if ratio_24hr > 0 : # 单边上涨,补仓比率不变
                data_json['config']['profit_ratio'] =  **7** + self.get_step()/4  #
                data_json['config']['double_throw_ratio'] = **5**
            else: # 单边下跌
                data_json['config']['double_throw_ratio'] =  **7** + self.get_step()/4
                data_json['config']['profit_ratio'] =  **5**

        else: # 系数内震荡行情

            data_json['config']['double_throw_ratio'] = **5** + self.get_step() / 4
            data_json['config']['profit_ratio'] = **5** + self.get_step() / 4
        self._modify_json_data(data_json)

钉钉预警

如果您想使用钉钉通知,那么你需要创建一个钉钉群,然后加入自定义机器人。最后将机器人的token粘贴到authorization文件中的dingding_token 关键词输入:报警

钉钉通知交易截图

钉钉交易信息

25日实战收益

收益图

私人微信:欢迎志同道合的朋友一同探讨,一起进步。

交流群 wechat-QRcode 币圈快讯爬取群 wx号:findpanpan 麻烦备注来自github

钉钉设置教程

钉钉设置教程

免责申明

本项目不构成投资建议,投资者应独立决策并自行承担风险 币圈有风险,入圈须谨慎。

?? 风险提示:防范以“虚拟货币”“区块链”名义进行非法集资的风险。

Owner
幸福村的码农
努力中...
幸福村的码农
Python Automated Machine Learning library for tabular data.

Simple but powerful Automated Machine Learning library for tabular data. It uses efficient in-memory SAP HANA algorithms to automate routine Data Scie

Daniel Khromov 47 Dec 17, 2022
NumPy-based implementation of a multilayer perceptron (MLP)

My own NumPy-based implementation of a multilayer perceptron (MLP). Several of its components can be tuned and played with, such as layer depth and size, hidden and output layer activation functions,

1 Feb 10, 2022
learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your personal portfolio

learn python in 100 days, a simple step could be follow from beginner to master of every aspect of python programming and project also include side project which you can use as demo project for your

BDFD 6 Nov 05, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
Optimal Randomized Canonical Correlation Analysis

ORCCA Optimal Randomized Canonical Correlation Analysis This project is for the python version of ORCCA algorithm. It depends on Numpy for matrix calc

Yinsong Wang 1 Nov 21, 2021
Pyomo is an object-oriented algebraic modeling language in Python for structured optimization problems.

Pyomo is a Python-based open-source software package that supports a diverse set of optimization capabilities for formulating and analyzing optimization models. Pyomo can be used to define symbolic p

Pyomo 1.4k Dec 28, 2022
Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Federal University of Rio Grande do Norte Technology Center Department of Computer Engineering and Automation Machine Learning Based Systems Design Re

Ivanovitch Silva 81 Oct 18, 2022
Highly interpretable classifiers for scikit learn, producing easily understood decision rules instead of black box models

Highly interpretable, sklearn-compatible classifier based on decision rules This is a scikit-learn compatible wrapper for the Bayesian Rule List class

Tamas Madl 482 Nov 19, 2022
MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data

MCML is a toolkit for semi-supervised dimensionality reduction and quantitative analysis of Multi-Class, Multi-Label data. We demonstrate its use

Pachter Lab 26 Nov 29, 2022
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
ML Kaggle Titanic Problem using LogisticRegrission

-ML-Kaggle-Titanic-Problem-using-LogisticRegrission here you will find the solution for the titanic problem on kaggle with comments and step by step c

Mahmoud Nasser Abdulhamed 3 Oct 23, 2022
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform.

Zillow-Houses This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform. Pipeline is consists of 10

2 Jan 09, 2022
fastFM: A Library for Factorization Machines

Citing fastFM The library fastFM is an academic project. The time and resources spent developing fastFM are therefore justified by the number of citat

1k Dec 24, 2022
Basic Docker Compose for Machine Learning Purposes

Docker-compose for Machine Learning How to use: cd docker-ml-jupyterlab

Chris Chen 1 Oct 29, 2021
Evidently helps analyze machine learning models during validation or production monitoring

Evidently helps analyze machine learning models during validation or production monitoring. The tool generates interactive visual reports and JSON profiles from pandas DataFrame or csv files. Current

Evidently AI 3.1k Jan 07, 2023
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023
Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Kaggle Tweet Sentiment Extraction Competition: 1st place solution (Dark of the Moon team)

Artsem Zhyvalkouski 64 Nov 30, 2022
Book Recommender System Using Sci-kit learn N-neighbours

Model-Based-Recommender-Engine I created a book Recommender System using Sci-kit learn's N-neighbours algorithm for my model and the streamlit library

1 Jan 13, 2022
Datetimes for Humans™

Maya: Datetimes for Humans™ Datetimes are very frustrating to work with in Python, especially when dealing with different locales on different systems

Timo Furrer 3.4k Dec 28, 2022