Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Related tags

Machine Learningmlops
Overview

Federal University of Rio Grande do Norte

Technology Center

Department of Computer Engineering and Automation

Machine Learning Based Systems Design

References

  • 📚 Noah Gift, Alfredo Deza. Practical MLOps: Operationalizing Machine Learning Models [Link]
  • 📚 Chip Huyen. Designing Machine Learning Systems: An Iterative Process for Production-Ready Applications. [Link]
  • 📚 Hannes Hapke, Catherine Nelson. Building Machine Learning Pipelines. [Link]
  • 📚 Mariano Anaya. Clean Code in Python [Link]
  • 📚 Aurélien Géron. Hands on Machine Learning with Scikit-Learn, Keras and TensorFlow. [Link]
  • 🤜 Dataquest Academic Program [Link]
  • 😃 CS329S - ML Systems Design [Link]
  • 🎯 Machine Learning Operations [Link]

Lessons

Week 01: Course Outline Open in PDF

  • Git and Version Control Open in Dataquest
    • You'll learn how to: a) organize your code using version control, b) resolve conflicts in version control, c) employ Git and Github to collaborate with others.
    • 👊 U1T1: guided project + getting a git repository.

Week 02: CLI fundamentals

  • Elements of the Command Line Open in Dataquest
    • You'll learn how to: a) employ the command line for Data Science, b) modify the behavior of commands with options, c) employ glob patterns and wildcards, d) define Important command line concepts, e) navigate he filesystem, f) manage users and permissions.
  • Text Processing in the Command Line Open in Dataquest
    • You'll learn how to: a) read and explore documentation, b) perform basic text processing, c) redirect and pipe output, d) inspect files, e) define different kinds of output, f) employ streams and file descriptors.
  • 🔠 U1T2: working with command line.

Week 03 - Clean Code Principles for Data Science and Machine Learning Open in PDF

  • Outline Open in Loom
  • Coding Best Practices Open in Loom
  • Writing Clean Code Open in Loom
  • Refactoring Code Open in Loom
  • Efficient Code Open in Loom
  • Documentation Open in Loom
  • Python Code Quality Authority (PCQA) - pycodestyle Open in Loom
  • PCQA - pylint Open in Loom
  • PCQA - autopep8 Open in Loom
  • PCQA - nbQA Open in Loom
  • ▶️ Hands on
    • 💾 Datasets [Link]
    • Writting Clean Code Jupyter
    • Exercise 01 Jupyter
    • Exercise 02 Jupyter
    • Exercise 03 Jupyter
    • Using pycodestyle Jupyter
    • Using pylint - script Python refactored script Python
    • Functions: Advanced - Best practices for writing functions Open in Dataquest

Week 04 Production Ready Code Open in PDF

  • Outline Open in Loom
  • Catching Errors Open in Loom
  • Testing and Data Science Open in Loom
  • A brief introduction about pytest Open in Loom
  • Logging Open in Loom
  • Case study: testing and logging Open in Loom
  • Model Drift Open in Loom
  • Hands on
    • Production ready code Jupyter
    • Data Visualization Fundamentals Open in Dataquest
      • You will learn how to: a) how to use data visualization to explore data and b) how and when to use the most common plots.
    • Storytelling Data Visualization and Information Design Open in Dataquest
      • You will learn how to: a) Create graphs using information design principles, b) create narrative data visualizations using Matplotlib, c) create visual patterns using Gestalt principles, d) control attention using pre-attentive attributes and e) employ Matplotlib's built-in styles.
Owner
Ivanovitch Silva
I'm an experimenter by design, and very interested in technologies related to Data Science & Machine Learning, Vehicles and Complex Networks.
Ivanovitch Silva
Pytools is an open source library containing general machine learning and visualisation utilities for reuse

pytools is an open source library containing general machine learning and visualisation utilities for reuse, including: Basic tools for API developmen

BCG Gamma 26 Nov 06, 2022
[HELP REQUESTED] Generalized Additive Models in Python

pyGAM Generalized Additive Models in Python. Documentation Official pyGAM Documentation: Read the Docs Building interpretable models with Generalized

daniel servén 747 Jan 05, 2023
Code for the TCAV ML interpretability project

Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors (TCAV) Been Kim, Martin Wattenberg, Justin Gilmer, C

552 Dec 27, 2022
It is a forest of random projection trees

rpforest rpforest is a Python library for approximate nearest neighbours search: finding points in a high-dimensional space that are close to a given

Lyst 211 Dec 29, 2022
Python package for causal inference using Bayesian structural time-series models.

Python Causal Impact Causal inference using Bayesian structural time-series models. This package aims at defining a python equivalent of the R CausalI

Thomas Cassou 219 Dec 11, 2022
The code from the Machine Learning Bookcamp book and a free course based on the book

The code from the Machine Learning Bookcamp book and a free course based on the book

Alexey Grigorev 5.5k Jan 09, 2023
easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

easyNeuron is a simple way to create powerful machine learning models, analyze data and research cutting-edge AI.

Neuron AI 5 Jun 18, 2022
Test symmetries with sklearn decision tree models

Test symmetries with sklearn decision tree models Setup Begin from an environment with a recent version of python 3. source setup.sh Leave the enviro

Rupert Tombs 2 Jul 19, 2022
ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions

A library for debugging/inspecting machine learning classifiers and explaining their predictions

154 Dec 17, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Microsoft 14.5k Jan 07, 2023
Python module for performing linear regression for data with measurement errors and intrinsic scatter

Linear regression for data with measurement errors and intrinsic scatter (BCES) Python module for performing robust linear regression on (X,Y) data po

Rodrigo Nemmen 56 Sep 27, 2022
Iris-Heroku - Putting a Machine Learning Model into Production with Flask and Heroku

Puesta en Producción de un modelo de aprendizaje automático con Flask y Heroku L

Jesùs Guillen 1 Jun 03, 2022
My capstone project for Udacity's Machine Learning Nanodegree

MLND-Capstone My capstone project for Udacity's Machine Learning Nanodegree Lane Detection with Deep Learning In this project, I use a deep learning-b

Michael Virgo 407 Dec 12, 2022
Basic Docker Compose for Machine Learning Purposes

Docker-compose for Machine Learning How to use: cd docker-ml-jupyterlab

Chris Chen 1 Oct 29, 2021
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 363 Dec 14, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
A Python implementation of the Robotics Toolbox for MATLAB

Robotics Toolbox for Python A Python implementation of the Robotics Toolbox for MATLAB® GitHub repository Documentation Wiki (examples and details) Sy

Peter Corke 1.2k Jan 07, 2023
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021