MBTR is a python package for multivariate boosted tree regressors trained in parameter space.

Related tags

Machine Learningmbtr
Overview

Documentation Status Build Status codecov Latest Version License: MIT

Multivariate Boosted TRee

What is MBTR

MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can handle arbitrary multivariate losses, as long as their gradient and Hessian are known. Gradient boosted trees are competition-winning, general-purpose, non-parametric regressors, which exploit sequential model fitting and gradient descent to minimize a specific loss function. The most popular implementations are tailored to univariate regression and classification tasks, precluding the possibility of capturing multivariate target cross-correlations and applying conditional penalties to the predictions. This package allows to arbitrarily regularize the predictions, so that properties like smoothness, consistency and functional relations can be enforced.

Installation

pip install --upgrade git+https://github.com/supsi-dacd-isaac/mbtr.git

Usage

MBT regressor follows the scikit-learn syntax for regressors. Creating a default instance and training it is as simple as:

m = MBT().fit(x,y)

while predictions for the test set are obtained through

y_hat = m.predict(x_te)

The most important parameters are the number of boosts n_boost, that is, the number of fitted trees, learning_rate and the loss_type. An extensive explanation of the different parameters can be found in the documentation.

Documentation

Documentation and examples on the usage can be found at docs.

Reference

If you make use of this software for your work, we would appreciate it if you would cite us:

Lorenzo Nespoli and Vasco Medici (2020). Multivariate Boosted Trees and Applications to Forecasting and Control arXiv

@article{nespoli2020multivariate,
  title={Multivariate Boosted Trees and Applications to Forecasting and Control},
  author={Nespoli, Lorenzo and Medici, Vasco},
  journal={arXiv preprint arXiv:2003.03835},
  year={2020}
}

Acknowledgments

The authors would like to thank the Swiss Federal Office of Energy (SFOE) and the Swiss Competence Center for Energy Research - Future Swiss Electrical Infrastructure (SCCER-FURIES), for their financial and technical support to this research work.

You might also like...
Python package for stacking (machine learning technique)
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

A Python Package to Tackle the Curse of Imbalanced Datasets in Machine Learning

imbalanced-learn imbalanced-learn is a python package offering a number of re-sampling techniques commonly used in datasets showing strong between-cla

A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions
ELI5 is a Python package which helps to debug machine learning classifiers and explain their predictions

A library for debugging/inspecting machine learning classifiers and explaining their predictions

ArviZ is a Python package for exploratory analysis of Bayesian models
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

Python package for machine learning for healthcare using a OMOP common data model

This library was developed in order to facilitate rapid prototyping in Python of predictive machine-learning models using longitudinal medical data from an OMOP CDM-standard database.

UpliftML: A Python Package for Scalable Uplift Modeling
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base learners for the uplift models. Evaluation functions expect a PySpark dataframe as input.

scikit-multimodallearn is a Python package implementing algorithms multimodal data.

scikit-multimodallearn is a Python package implementing algorithms multimodal data. It is compatible with scikit-learn, a popul

MICOM is a Python package for metabolic modeling of microbial communities
MICOM is a Python package for metabolic modeling of microbial communities

Welcome MICOM is a Python package for metabolic modeling of microbial communities currently developed in the Gibbons Lab at the Institute for Systems

Comments
  • Is it possible to define custom loss function ?

    Is it possible to define custom loss function ?

    Dear all, First thank you for developping this tool, that I believe is of great interest. I am working with:

    • environmental variables (e.g. temperature, salinity)
    • multi-dimensional targets, that are relative abundance, with their sum = 1 for each site

    Therefore, I was wondering if it is possible to implement a custom loss function in the mbtr framework, that would be adapted for proportions. Please note that I am quite new to python.

    To do some testing, I tryed to dupplicate the mse loss function with another name in the losses.py file and adding the new loss in the LOSS_MAP in __inits__.py. Then I compiled the files. However, I have this error when trying to run the model from the multi_reg.py example:

    >>> m = MBT(loss_type = 'mse', n_boosts=30,  min_leaf=100, lambda_weights=1e-3).fit(x_tr, y_tr, do_plot=True)
      3%|▎         | 1/30 [00:03<01:45,  3.63s/it]
    >>> m = MBT(loss_type = 'custom_mse', n_boosts=30,  min_leaf=100, lambda_weights=1e-3).fit(x_tr, y_tr, do_plot=True)
      0%|          | 0/30 [00:00<?, ?it/s]KeyError: 'custom_mse'
    

    It seems that the new loss is not recognised in LOSS_MAP:

    >>> LOSS_MAP = {'custom_mse': losses.custom_MSE,
    ...             'mse': losses.MSE,
    ...             'time_smoother': losses.TimeSmoother,
    ...             'latent_variable': losses.LatentVariable,
    ...             'linear_regression': losses.LinRegLoss,
    ...             'fourier': losses.FourierLoss,
    ...             'quantile': losses.QuantileLoss,
    ...             'quadratic_quantile': losses.QuadraticQuantileLoss}
    AttributeError: module 'mbtr.losses' has no attribute 'custom_MSE'
    

    I guess that I missed something when trying to dupplicate and rename the mse loss. I would appreciate any help if the definition of a custom loss function is possible.

    Best regards,

    opened by alexschickele 2
  • Dataset cannot be reached

    Dataset cannot be reached

    Hi thank you for your effort to create this. I want to try this but i cannot download nor visit the web that you provided in example multivariate_forecas.py

    Is there any alternative link for that dataset? thank you regards!

    opened by kristfrizh 1
  • Error at import time with python 3.10.*

    Error at import time with python 3.10.*

    I want to use MBTR in a teaching module and I need to use jupyter-lab inside a conda environment for teaching purposes. While MBTR works as expected in a vanilla python 3.8, it errors out (on the same machine) in a conda environment using python 3.10

    Steps to reproduce

    conda create --name testenv
    conda activate testenv
    
    conda install -c conda-forge jupyterlab
    pip install --upgrade git+https://github.com/supsi-dacd-isaac/mbtr.git
    # to make sure to get the latest version; but the version on pypi gives the same error 
    

    Then

    python
    

    and in python

    from mbtr.mbtr import MBT
    

    which outputs the following error

    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py", line 317, in <module>
        def leaf_stats(y, edges, x, order):
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/decorators.py", line 219, in wrapper
        disp.compile(sig)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 965, in compile
        cres = self._compiler.compile(args, return_type)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 129, in compile
        raise retval
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 139, in _compile_cached
        retval = self._compile_core(args, return_type)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 152, in _compile_core
        cres = compiler.compile_extra(self.targetdescr.typing_context,
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 716, in compile_extra
        return pipeline.compile_extra(func)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 452, in compile_extra
        return self._compile_bytecode()
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 520, in _compile_bytecode
        return self._compile_core()
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 499, in _compile_core
        raise e
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 486, in _compile_core
        pm.run(self.state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 368, in run
        raise patched_exception
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 356, in run
        self._runPass(idx, pass_inst, state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_lock.py", line 35, in _acquire_compile_lock
        return func(*args, **kwargs)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 311, in _runPass
        mutated |= check(pss.run_pass, internal_state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 273, in check
        mangled = func(compiler_state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typed_passes.py", line 105, in run_pass
        typemap, return_type, calltypes, errs = type_inference_stage(
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typed_passes.py", line 83, in type_inference_stage
        errs = infer.propagate(raise_errors=raise_errors)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typeinfer.py", line 1086, in propagate
        raise errors[0]
    numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend)
    No conversion from UniTuple(none x 2) to UniTuple(array(float64, 2d, A) x 2) for '$116return_value.7', defined at None
    
    File ".conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py", line 327:
    def leaf_stats(y, edges, x, order):
        <source elided>
            s_left, s_right = None, None
        return s_left, s_right
        ^
    
    During: typing of assignment at /home/myself/.conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py (327)
    
    File ".conda/envs/test/lib/python3.10/site-packages/mbtr/mbtr.py", line 327:
    def leaf_stats(y, edges, x, order):
        <source elided>
            s_left, s_right = None, None
        return s_left, s_right
        ^
    

    Thanks in advance for any pointer/help. The course where I want to present this is a summer course and is closing in on me 😉

    opened by jiho 0
Releases(v0.1.3)
Owner
SUPSI-DACD-ISAAC
SUPSI-DACD-ISAAC
Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen.

SmartMeterEVN Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen. Smart Meter werden

greenMike 43 Dec 04, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning

This is a Cricket Score Predictor that predicts the first innings score of a T20 Cricket match using Machine Learning. It is a Web Application.

Developer Junaid 3 Aug 04, 2022
Tools for mathematical optimization region

Tools for mathematical optimization region

林景 15 Nov 30, 2022
fMRIprep Pipeline To Machine Learning

fMRIprep Pipeline To Machine Learning(Demo) 所有配置均在config.py文件下定义 前置环境(lilab) 各个节点均安装docker,并有fmripre的镜像 可以使用conda中的base环境(相应的第三份包之后更新) 1. fmriprep scr

Alien 3 Mar 08, 2022
The Fuzzy Labs guide to the universe of open source MLOps

Open Source MLOps This is the Fuzzy Labs guide to the universe of free and open source MLOps tools. Contents What is MLOps, anyway? Data version contr

Fuzzy Labs 352 Dec 29, 2022
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
A Python implementation of FastDTW

fastdtw Python implementation of FastDTW [1], which is an approximate Dynamic Time Warping (DTW) algorithm that provides optimal or near-optimal align

tanitter 651 Jan 04, 2023
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
MegFlow - Efficient ML solutions for long-tailed demands.

Efficient ML solutions for long-tailed demands.

旷视天元 MegEngine 371 Dec 21, 2022
The Emergence of Individuality

The Emergence of Individuality

16 Jul 20, 2022
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform.

Zillow-Houses This repository contains full machine learning pipeline of the Zillow Houses competition on Kaggle platform. Pipeline is consists of 10

2 Jan 09, 2022
Machine Learning toolbox for Humans

Reproducible Experiment Platform (REP) REP is ipython-based environment for conducting data-driven research in a consistent and reproducible way. Main

Yandex 663 Dec 31, 2022
List of Data Science Cheatsheets to rule the world

Data Science Cheatsheets List of Data Science Cheatsheets to rule the world. Table of Contents Business Science Business Science Problem Framework Dat

Favio André Vázquez 11.7k Dec 30, 2022
A scikit-learn based module for multi-label et. al. classification

scikit-multilearn scikit-multilearn is a Python module capable of performing multi-label learning tasks. It is built on-top of various scientific Pyth

802 Jan 01, 2023
Simulation of early COVID-19 using SIR model and variants (SEIR ...).

COVID-19-simulation Simulation of early COVID-19 using SIR model and variants (SEIR ...). Made by the Laboratory of Sustainable Life Assessment (GYRO)

José Paulo Pereira das Dores Savioli 1 Nov 17, 2021
onelearn: Online learning in Python

onelearn: Online learning in Python Documentation | Reproduce experiments | onelearn stands for ONE-shot LEARNning. It is a small python package for o

15 Nov 06, 2022
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
ArviZ is a Python package for exploratory analysis of Bayesian models

ArviZ (pronounced "AR-vees") is a Python package for exploratory analysis of Bayesian models. Includes functions for posterior analysis, data storage, model checking, comparison and diagnostics

ArviZ 1.3k Jan 05, 2023