paper list in the area of reinforcenment learning for recommendation systems

Overview

RL4Recsys

paper list in the area of reinforcenment learning for recommendation systems

https://github.com/cszhangzhen/DRL4Recsys

2020

SIGIR, Self-Supervised Reinforcement Learning for Recommender Systems, https://arxiv.org/abs/2006.05779

WSDM, Model-Based Reinforcement Learning for Whole-Chain Recommendations, https://arxiv.org/abs/1902.03987

WSDM, End-to-End Deep Reinforcement Learning based Recommendation with Supervised Embedding, https://dl.acm.org/doi/abs/10.1145/3336191.3371858

WSDM, Pseudo Dyna-Q: A Reinforcement Learning Framework for Interactive Recommendation, https://dl.acm.org/doi/abs/10.1145/3336191.3371801

AAAI, Simulating User Feedback for Reinforcement Learning Based Recommendations, https://arxiv.org/pdf/1906.11462.pdf

KBS, State representation modeling for deep reinforcement learning based recommendation, https://www.sciencedirect.com/science/article/abs/pii/S095070512030407X

MOReL : Model-Based Offline Reinforcement Learning, https://arxiv.org/abs/2005.05951

KDD, MBCAL: Sample Efficient and Variance Reduced Reinforcement Learning for Recommender Systems, https://arxiv.org/pdf/1911.02248.pdf

Generator and Critic: A Deep Reinforcement Learning Approach for Slate Re-ranking in E-commerce, https://arxiv.org/pdf/2005.12206.pdf

2019

NIPS, Model-Based Reinforcement Learning with Adversarial Training for Online Recommendation, paper and code: http://papers.nips.cc/paper/9257-a-model-based-reinforcement-learning-with-adversarial-training-for-online-recommendation

NIPS, Benchmarking Batch Deep Reinforcement Learning Algorithms, https://arxiv.org/abs/1910.01708, code: https://github.com/sfujim/BCQ

ICML, Off-Policy Deep Reinforcement Learning without Exploration, https://arxiv.org/abs/1812.02900, code: https://github.com/sfujim/BCQ

ICML, Challenges of Real-World Reinforcement Learning, https://arxiv.org/abs/1904.12901

ICML, Horizon: Facebook's Open Source Applied Reinforcement Learning Platform, https://arxiv.org/pdf/1811.00260.pdf

ICML, Generative Adversarial User Model for Reinforcement Learning Based Recommendation System, paper and code, http://proceedings.mlr.press/v97/chen19f.html

KDD, Deep Reinforcement Learning for List-wise Recommendations,https://arxiv.org/pdf/1801.00209.pdf code: https://github.com/luozachary/drl-rec

WSDM, Top-K Off-Policy Correction for a REINFORCE Recommender System, https://arxiv.org/pdf/1812.02353.pdf

SigWeb, Deep reinforcement learning for search, recommendation, and online advertising: a survey, https://dl.acm.org/doi/abs/10.1145/3320496.3320500

UIST, Learning Cooperative Personalized Policies from Gaze Data, https://dl.acm.org/doi/abs/10.1145/3332165.3347933

Toward Simulating Environments in Reinforcement Learning Based Recommendations, https://arxiv.org/abs/1906.11462

RecSys, PyRecGym: a reinforcement learning gym for recommender systems, https://dl.acm.org/doi/abs/10.1145/3298689.3346981

Recsys, Revisiting offline evaluation for implicit-feedback recommender systems, https://dl.acm.org/doi/pdf/10.1145/3298689.3347069

IJCAI, Reinforcement Learning for Slate-based Recommender Systems: A Tractable Decomposition and Practical Methodology, https://arxiv.org/pdf/1905.12767.pdf

AAAI, Virtual-Taobao: Virtualizing Real-world Online Retail Environment for Reinforcement Learning, https://arxiv.org/pdf/1805.10000.pdf

WWW, Towards Neural Mixture Recommender for Long Range Dependent User Sequences, https://dl.acm.org/doi/abs/10.1145/3308558.3313650

Deep Reinforcement Learning for Online Advertising in Recommender Systems, https://arxiv.org/abs/1909.03602

Towards Characterizing Divergence in Deep Q-Learning, https://arxiv.org/abs/1903.08894

Dynamic Search -- Optimizing the Game of Information Seeking, https://arxiv.org/abs/1909.12425

RecSim: A Configurable Simulation Platform for Recommender Systems, https://arxiv.org/abs/1909.04847

2018

KDD, Reinforcement Learning to Rank in E-Commerce Search Engine: Formalization, Analysis, and Application, https://arxiv.org/pdf/1803.00710.pdf

WWW, DRN: A Deep Reinforcement Learning Framework for News Recommendation, http://www.personal.psu.edu/~gjz5038/paper/www2018_reinforceRec/www2018_reinforceRec.pdf

General RL Materials

https://github.com/higgsfield/RL-Adventure-2, PyTorch tutorial of: actor critic / proximal policy optimization / acer / ddpg / twin dueling ddpg / soft actor critic / generative adversarial imitation learning / hindsight experience replay

Key Papers from OpenAI, https://spinningup.openai.com/en/latest/spinningup/keypapers.html

Strategic Exploration in Reinforcement Learning - New Algorithms and Learning Guarantees, https://www.ml.cmu.edu/research/phd-dissertation-pdfs/cmu-ml-19-116-dann.pdf

Other Paper

Learning to Recommend via Meta Parameter Partition, https://arxiv.org/pdf/1912.04108.pdf

Adversarial Machine Learning in Recommender Systems: State of the art and Challenges, https://arxiv.org/abs/2005.10322

WWW20, Mixed Negative Sampling for Learning Two-tower Neural Networks in Recommendations, https://dl.acm.org/doi/abs/10.1145/3366424.3386195

ICLR2020, On the Variance of the Adaptive Learning Rate and Beyond, https://github.com/LiyuanLucasLiu/RAdam, code: https://github.com/LiyuanLucasLiu/RAdam

WSDM2020, Unbiased Recommender Learning from Missing-Not-At-Random Implicit Feedback, https://dl.acm.org/doi/abs/10.1145/3336191.3371783

Recsys2019, Recommending what video to watch next: a multitask ranking system, https://dl.acm.org/doi/abs/10.1145/3298689.3346997

Recsys2019, Addressing delayed feedback for continuous training with neural networks in CTR prediction, https://dl.acm.org/doi/abs/10.1145/3298689.3347002

IJCAI2019, Sequential Recommender Systems: Challenges, Progress and Prospects, https://arxiv.org/abs/2001.04830

KDD2019, Fairness in Recommendation Ranking through Pairwise Comparisons, https://dl.acm.org/doi/abs/10.1145/3292500.3330745

BoTorch: Programmable Bayesian Optimization in PyTorch, https://arxiv.org/abs/1910.06403

iNAS: Integral NAS for Device-Aware Salient Object Detection

iNAS: Integral NAS for Device-Aware Salient Object Detection Introduction Integral search design (jointly consider backbone/head structures, design/de

顾宇超 77 Dec 02, 2022
Weight estimation in CT by multi atlas techniques

maweight A Python package for multi-atlas based weight estimation for CT images, including segmentation by registration, feature extraction and model

György Kovács 0 Dec 24, 2021
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Template repository for managing machine learning research projects built with PyTorch-Lightning

Tutorial Repository with a minimal example for showing how to deploy training across various compute infrastructure.

Sidd Karamcheti 3 Feb 11, 2022
[CVPR 2021] Involution: Inverting the Inherence of Convolution for Visual Recognition, a brand new neural operator

involution Official implementation of a neural operator as described in Involution: Inverting the Inherence of Convolution for Visual Recognition (CVP

Duo Li 1.3k Dec 28, 2022
Using image super resolution models with vapoursynth and speeding them up with TensorRT

vs-RealEsrganAnime-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Also a docker image since

4 Aug 23, 2022
Exploring Cross-Image Pixel Contrast for Semantic Segmentation

Exploring Cross-Image Pixel Contrast for Semantic Segmentation Exploring Cross-Image Pixel Contrast for Semantic Segmentation, Wenguan Wang, Tianfei Z

Tianfei Zhou 510 Jan 02, 2023
Transfer SemanticKITTI labeles into other dataset/sensor formats.

LiDAR-Transfer Transfer SemanticKITTI labeles into other dataset/sensor formats. Content Convert datasets (NUSCENES, FORD, NCLT) to KITTI format Minim

Photogrammetry & Robotics Bonn 64 Nov 21, 2022
Matthew Colbrook 1 Apr 08, 2022
[제 13회 투빅스 컨퍼런스] OK Mugle! - 장르부터 멜로디까지, Content-based Music Recommendation

Ok Mugle! 🎵 장르부터 멜로디까지, Content-based Music Recommendation 'Ok Mugle!'은 제13회 투빅스 컨퍼런스(2022.01.15)에서 진행한 음악 추천 프로젝트입니다. Description 📖 본 프로젝트에서는 Kakao

SeongBeomLEE 5 Oct 09, 2022
OpenVINO黑客松比赛项目

Window_Guard OpenVINO黑客松比赛项目 英文名称:Window_Guard 中文名称:窗口卫士 硬件 树莓派4B 8G版本 一个磁石开关 USB摄像头(MP4视频文件也可以) 软件(库) OpenVINO RPi 使用方法 本项目使用的OPenVINO是是2021.3版本,并使用了

Tango 6 Jul 04, 2021
The official PyTorch code for NeurIPS 2021 ML4AD Paper, "Does Thermal data make the detection systems more reliable?"

MultiModal-Collaborative (MMC) Learning Framework for integrating RGB and Thermal spectral modalities This is the official code for NeurIPS 2021 Machi

NeurAI 12 Nov 02, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Official PyTorch implementation of the Fishr regularization for out-of-distribution generalization

Fishr: Invariant Gradient Variances for Out-of-distribution Generalization Official PyTorch implementation of the Fishr regularization for out-of-dist

62 Dec 22, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Keras当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和fa

Bubbliiiing 31 Nov 15, 2022
Node-level Graph Regression with Deep Gaussian Process Models

Node-level Graph Regression with Deep Gaussian Process Models Prerequests our implementation is mainly based on tensorflow 1.x and gpflow 1.x: python

1 Jan 16, 2022
Fuzzing the Kernel Using Unicornafl and AFL++

Unicorefuzz Fuzzing the Kernel using UnicornAFL and AFL++. For details, skim through the WOOT paper or watch this talk at CCCamp19. Is it any good? ye

Security in Telecommunications 283 Dec 26, 2022
Weight initialization schemes for PyTorch nn.Modules

nninit Weight initialization schemes for PyTorch nn.Modules. This is a port of the popular nninit for Torch7 by @kaixhin. ##Update This repo has been

Alykhan Tejani 69 Jan 26, 2021