Data for "Driving the Herd: Search Engines as Content Influencers" paper

Overview

herding_data

Data for "Driving the Herd: Search Engines as Content Influencers" paper

Dataset description

The collection contains 2250 documents, 30 initial relevant documents (round 0) - located in initial_documents.trectext file. 2100 documents (rounds 1-5) created by competitors. 120 documents are the example documents that were manually promoted in the herding method experiments.

This dataset is divided w.r.t. the different experiments for content effect, described in the paper.

Format: trectext. DOCNO Format: ROUND- - -

Relevance Judgments (qrels):

All documents in the collection were judged for relevance. Annotators were presented with both the title and the description of each TREC topic and were asked to classify a document as relevant if it satisfies the information need stated in the description.

A document judged relevant by less than three annotators was labeled as non-relevant (0). Documents judged relevant by at least three, four or five annotators were labeled as marginally relevant (1), fairly relevant (2) and highly relevant (3), respectively. For each experiment the relevance judgment file has ".rel" suffix.

Quality judgements:

All documents in the collection where judged for quality by five annotators. Annotators were presented with the text of the document and were asked to classify the docuemnt as: (1) Valid, (2) Keyword-stuffed, (3) Spam.

A document is deemed as keyword-stuffed if it contained excessive repetition of words which seemed unnatural or artificially introduced.

A document is considered as spam if its content could not possibly satisfy any information need.

If a document is not spam or keywordstuffed, it is considered as valid. Documents judged valid by at least three, four or five annotators were labeled as marginally high-quality (1), fairly high-quality (2) and highly high-quality (3), respectively. For each experiment the quality judgment file has ".ks" suffix.

Queries

We used 30 of ClueWeb09 queries which can be downloded here: http://trec.nist.gov/data/webmain.html.

Example documents

In the herding method experiment for each query and effect an exapmle document, manifesting the desired content effect, was manually promoted to 1'st place. For each effect the example documents are located at "herding__example_documents.trectext" file. The format of document names is: DOCNO Format: ROUND-00- -EXAMPLEDOC

Subtopic effect experiment

This content effect was tested both in terms of herding and biasing approaches. For each query 2 different subtopics were tested. The subtopics were taken from ClueWeb09 subtopics list. The mapping between qid and the subtopic number which was promoted (and the actual information need manifested by the subtopic) is located at _subtopics_map.txt files (in each relevant directory separetly).

We include relevance judgemnts for each document (competing for a rankings w.r.t a query) w.r.t. to both subtopics promoted for the query. Please note that each document was tested w.r.t. a single subtopic (can be induced by the mapping file) during the experiment. The judgments are for both subtopics for analysis porpuses only. Relevance judgments w.r.t. subtopics name is " _relevance_to_subptopic.rel".

The qrels format is: " ".

Directories

Herding

Document_length_effect

The data contained in this directory is related to the documents created in the document length effect experiment (herding method).

Non_relevance_effect

The data contained in this directory is related to the documents created in the non-relevance effect experiment (herding method).

Query_terms_effect

The data contained in this directory is related to the documents created in the query terms effect experiment (herding method).

Subtopic_effect

The data contained in this directory is related to the documents created in the subtopic effect experiment (herding method).

Biasing

Subtopic_effect

The data contained in this directory is related to the documents created in the subtopic effect experiment (biasing method).

Control

The data contained in this directory is related to the documents created in the control group. That is, no expore of any kind of manipulation for this group.

Dummies

The data contained in this directory is related to the documents taken from Raifer et al '17 dataset. Dummies with docnos "DUMMY_{0,1}" where shared over all groups.

Control group and biasing groups where filled with DUMMY_2 dummies (in the docno) as well.

Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
A 3D sparse LBM solver implemented using Taichi

taichi_LBM3D Background Taichi_LBM3D is a 3D lattice Boltzmann solver with Multi-Relaxation-Time collision scheme and sparse storage structure impleme

Jianhui Yang 121 Jan 06, 2023
Repo for "Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks"

Summary This is the code for the paper Event-Stream Representation for Human Gaits Identification Using Deep Neural Networks by Yanxiang Wang, Xian Zh

zhangxian 54 Jan 03, 2023
Neural network-based build time estimation for additive manufacturing

Neural network-based build time estimation for additive manufacturing Oh, Y., Sharp, M., Sprock, T., & Kwon, S. (2021). Neural network-based build tim

Yosep 1 Nov 15, 2021
Download files from DSpace systems (because for some reason DSpace won't let you)

DSpaceDL A tool for downloading files from DSpace items. For some reason, DSpace systems have a dogshit UI, and Universities absolutely LOOOVE to use

Soumitra Shewale 5 Dec 01, 2022
Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition

Similarity-based Gray-box Adversarial Attack Against Deep Face Recognition Introduction Run attack: SGADV.py Objective function: foolbox/attacks/gradi

1 Jul 18, 2022
Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Points2Surf: Learning Implicit Surfaces from Point Clouds (ECCV 2020 Spotlight)

Philipp Erler 329 Jan 06, 2023
Demo code for ICCV 2021 paper "Sensor-Guided Optical Flow"

Sensor-Guided Optical Flow Demo code for "Sensor-Guided Optical Flow", ICCV 2021 This code is provided to replicate results with flow hints obtained f

10 Mar 16, 2022
Implementation of Online Label Smoothing in PyTorch

Online Label Smoothing Pytorch implementation of Online Label Smoothing (OLS) presented in Delving Deep into Label Smoothing. Introduction As the abst

83 Dec 14, 2022
Referring Video Object Segmentation

Awesome-Referring-Video-Object-Segmentation Welcome to starts ⭐ & comments 💹 & sharing 😀 !! - 2021.12.12: Recent papers (from 2021) - welcome to ad

Explorer 57 Dec 11, 2022
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

AI2 79 Dec 23, 2022
[ICCV 2021] Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation

ADDS-DepthNet This is the official implementation of the paper Self-supervised Monocular Depth Estimation for All Day Images using Domain Separation I

LIU_LINA 52 Nov 24, 2022
MIMO-UNet - Official Pytorch Implementation

MIMO-UNet - Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Rethinking Coarse-to-

Sungjin Cho 248 Jan 02, 2023
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
A real world application of a Recurrent Neural Network on a binary classification of time series data

What is this This is a real world application of a Recurrent Neural Network on a binary classification of time series data. This project includes data

Josep Maria Salvia Hornos 2 Jan 30, 2022
hipCaffe: the HIP port of Caffe

Caffe Caffe is a deep learning framework made with expression, speed, and modularity in mind. It is developed by the Berkeley Vision and Learning Cent

ROCm Software Platform 126 Dec 05, 2022
Code for Contrastive-Geometry Networks for Generalized 3D Pose Transfer

CGTransformer Code for our AAAI 2022 paper "Contrastive-Geometry Transformer network for Generalized 3D Pose Transfer" Contrastive-Geometry Transforme

18 Jun 28, 2022
Leaf: Multiple-Choice Question Generation

Leaf: Multiple-Choice Question Generation Easy to use and understand multiple-choice question generation algorithm using T5 Transformers. The applicat

Kristiyan Vachev 62 Dec 20, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021)

Learning Facial Representations from the Cycle-consistency of Face (ICCV 2021) This repository contains the code for our ICCV2021 paper by Jia-Ren Cha

Jia-Ren Chang 40 Dec 27, 2022