Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Overview

Vertex AI: Serverless framework for MLOPs (ESP / ENG)

Español

Qué es esto?

Este repo contiene un pipeline end to end diseñado usando el SDK de Kubeflow Pipelines (KFP). En el contexto del uso de Vertex AI como solución, la idea es construir una arquitectura de machine learning lo más automatizada posible, integrando algunos de los principales servicios de Google Cloud Platform (GCP) tales como BigQuery (data warehousing), Google Cloud Storage (almacenamiento de objetos) y Container Registry (repositorio de inágenes de Docker).

Cómo lo corro?

  • Primero, ejecutar la notebook pipeline_setup.ipynb. Contiene la configuración de la infraestructura que será utilizada: se crean datasets en BigQuery y buckets en GCS y se instalan librerías necesarias. Además se crean imágenes de Docker y se pushea a Container Registry para los jobs de tuneos de hiperparámetros.
  • Segundo, dentro de la carpeta components se encuentra la notebook components_definition.ipynb que deberá ejecutarse para generar los .yamls que serán invocados en la notebook principal de ejecución.
  • Por último, seguir los pasos indicados en pipeline_run.ipynb. Algunos parámetros como la cantidad de trials de hiperparámetros o los tipos de máquina deseadas para algunos pasos pueden ser fácilmente modificables.

TO-DO

agregar costo estimado permisos

English

What is this?

This repo contains an end to end pipeline designed using Kubelow Pipelines SDK (KFP). Using Vertex AI as a main solution, the idea is to build a machine learning architecture as automated as possible, integrating some of the main Google Cloud Platform (GCP) services, such as BigQuery (data warehousing), Google Cloud Storage (storage system) and Container Registry (Docker images repository).

How do I run it?

  • First, execute pipeline_setup.ipynb. It contains the infraestructure configuration to be used: BigQuery datasets and GCS buckets are created and installs the necessary libraries. It also creates Docker images and pushes them to Container Registry in order to perform hyperparameter tuning jobs.
  • Second, in the components folder there's a notebook called components_definition.ipynb which should be executed to generate the .yamls to be invoked in the main notebook execution.
  • Last, follow the steps in pipeline_run.ipynb. Some parameters, as hyperparameter trials or machine types for given steps of the process can be easily modified.

To-do

estimated cost roles

Owner
Hernán Escudero
Lead Data Scientist & ML Engineer at @CoreBI R & Python // Shiny Developer
Hernán Escudero
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
I explore rock vs. mine prediction using a SONAR dataset

I explore rock vs. mine prediction using a SONAR dataset. Using a Logistic Regression Model for my prediction algorithm, I intend on predicting what an object is based on supervised learning.

Jeff Shen 1 Jan 11, 2022
Implementation of Nalbach et al. 2017 paper.

Deep Shading Convolutional Neural Networks for Screen-Space Shading Our project is based on Nalbach et al. 2017 paper. In this project, a set of buffe

Marcel Santana 17 Sep 08, 2022
The implementation of the paper "A Deep Feature Aggregation Network for Accurate Indoor Camera Localization".

A Deep Feature Aggregation Network for Accurate Indoor Camera Localization This is the PyTorch implementation of our paper "A Deep Feature Aggregation

9 Dec 09, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
This repo is customed for VisDrone.

Object Detection for VisDrone(无人机航拍图像目标检测) My environment 1、Windows10 (Linux available) 2、tensorflow = 1.12.0 3、python3.6 (anaconda) 4、cv2 5、ensemble

53 Jul 17, 2022
Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Strongly local p-norm-cut algorithms for semi-supervised learning and local graph clustering

Meng Liu 2 Jul 19, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022
A more easy-to-use implementation of KPConv

A more easy-to-use implementation of KPConv This repo contains a more easy-to-use implementation of KPConv based on PyTorch. Introduction KPConv is a

Zheng Qin 35 Dec 14, 2022
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
Visualizer for neural network, deep learning, and machine learning models

Netron is a viewer for neural network, deep learning and machine learning models. Netron supports ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Tens

Lutz Roeder 21k Jan 06, 2023
Easy and comprehensive assessment of predictive power, with support for neuroimaging features

Documentation: https://raamana.github.io/neuropredict/ News As of v0.6, neuropredict now supports regression applications i.e. predicting continuous t

Pradeep Reddy Raamana 93 Nov 29, 2022
Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning"

VANET Code reproduce for paper "Vehicle Re-identification with Viewpoint-aware Metric Learning" Introduction This is the implementation of article VAN

EMDATA-AILAB 23 Dec 26, 2022
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
Solve a Rubiks Cube using Python Opencv and Kociemba module

Rubiks_Cube_Solver Solve a Rubiks Cube using Python Opencv and Kociemba module Main Steps Get the countours of the cube check whether there are tota

Adarsh Badagala 176 Jan 01, 2023
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

Dynamic Data Augmentation with Gating Networks This is an official PyTorch implementation of the paper Dynamic Data Augmentation with Gating Networks

九州大学 ヒューマンインタフェース研究室 3 Oct 26, 2022
GDSC-ML Team Interview Task

GDSC-ML-Team---Interview-Task Task 1 : Clean or Messy room In this task we have to classify the given test images as clean or messy. - Link for datase

Aayush. 1 Jan 19, 2022
MERLOT: Multimodal Neural Script Knowledge Models

merlot MERLOT: Multimodal Neural Script Knowledge Models MERLOT is a model for learning what we are calling "neural script knowledge" -- representatio

Rowan Zellers 190 Dec 22, 2022
Official implementation for NIPS'17 paper: PredRNN: Recurrent Neural Networks for Predictive Learning Using Spatiotemporal LSTMs.

PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive Learning The predictive learning of spatiotemporal sequences aims to generate future

THUML: Machine Learning Group @ THSS 243 Dec 26, 2022