Avocado hass time series vs predict price

Overview

AVOCADO HASS TIME SERIES VÀ PREDICT PRICE

Trước khi vào Heroku muốn giao diện đẹp mọi người chuyển giúp mình theo hình bên dưới image

predict_avocado

https://avocado-hass.herokuapp.com/ deployed to Heroku

Please change setting to theme dark

Nếu trường muốn coi trên máy local host thì làm các bước sau:

Bước 1: Down code trên github về Bước 2: Vào trang streamlit để thực hiện theo hướng dẫn của treamlit: https://docs.streamlit.io/library/get-started/installation

I. TỔNG QUAN VỀ HỆ THỐNG DỮ LIỆU

  1. Mục đích
    • Dự đoán giá bơ trung bình của bơ "Hass" ở Mỹ
    • Xem xét mở rộng các loại trang trại Bơ đang có trong việc trồng bơ ở các vùng khác
    • Xây dựng mô hình dự báo giá trùng bình của bơ "Hass" ở Mỹ sau đó xem xét việc mở rộng sản xuất kinh doanh
  2. Vi sao có dự án nào ?
    • Ai (Who): Doanh nghiệp là người cần
    • Tại sao (Why): Giá bơ biến động ở các vùng khác nhau ? Có nên trồng bơ các vùng đó không ?
  3. Hiện tại
    • Công ty kinh doanh quả bơ ở rất nhiều vùng của nước Mỹ có 2 loại bơ: Bơ thường và bơ hữu cơ
    • Quy cách đóng gọi theo nhiều quy chuẩn: Small/ Large/ Xlarge Bags
    • Có 3 loại item (product look up) khác nhau: 4046, 4225, 4770
  4. Vấn đề
    • Doanh nghiệp chưa có mô hình dự báo giá bơ cho việc mở rộng
    • Tối ưu sao việc tiếp cận giá bơ tới người tiêu dùng thấp nhất
  5. Thách thức và cách tiếp cận - Challenge and Approach
    • Dữ liệu được lấy trực tiếp từ máy tính tính tiền của các nhà bán lẻ dựa trên doanh số bán lẻ thực tế của bơ Hass
    • Dữ liệu đại diện cho dữ liệu lấy từ máy quét bán lẻ hàng tuần cho lượng bán lẻ (National retail volumn - units) và giá bơ từ tháng 4/2015 đến tháng 3/2018
    • Giá Trung bình (Average Price) trong bảng phản ánh giá trên một đơn vị (mỗi quả bơ), ngay cả khi nhiều đơn vị (bơ) được bán trong bao
    • Mã tra cứu sản phẩm - Product Lookup codes (PLU’s) trong bảng chỉ dành cho bơ Hass, không dành cho các sản phẩm khác.
  6. Data obtained - Thu thập dữ liệu
    • Không thông quan nguồn cào data
    • Toàn bộ dữ liệu được đổ ra và lưu trữ trong tập tin avocado.csv với 18249 record.
    • Có 2 loại bơ trong tập dữ liệu và một số vùng khác nhau. Điều này cho phép chúng ta thực hiện tất cả các loại phân tích cho các vùng khác nhau hoặc phân tích toàn bộ nước mỹ theo một trong 2 loại bơ
  7. Đặt ra yêu cầu với bài toán

Yêu cầu 1: Với bài toán 1: thực hiện dự đoán giá bơ trung bình

  • Thực hiện các tiền xử lý dữ liệu bổ sung (nếu cần)
  • Ngoài những thuật toán regression đã được thực hiện, có thuật toán nào khác cho kết quả tốt hơn không? Thực hiện với thuật toán đó. Tổng hợp kết quả thu được."

Yêu cầu 2: Với bài toán 2: Thực hiện dự đoán giá, khả năng mở rộng trong tương lai với Organic Avocado ở vùng California

Yêu cầu 3: Hãy làm tiếp phần dự đoán giá bơ thường (Conventiton Avocado) của vùng California

Yêu cầu 4: Hãy chọn ra 1 vùng (Trong danh sách các vùng bơ "Hass" đang kinh doanh) mà bạn cho rằng trong tương lai có thể trong trọt, sản xuất kinh doanh (organic và/ hoặc Conventional Avocado). Hãy chứng minh đều này bằng cách triển khai các bài toán như đã với vùng california

II. TỔNG QUAN VỀ THỊ TRƯỜNG

  1. Thị trường Hoa Kỳ image
  2. Mục tiêu và cấn tiếp cận image
  3. Ai là người và cần gì ? image
  4. Kết luận image

III. HƯỚNG DẪN SỬ DỤNG VÀ CHỌN CÁC TÍNH NĂNG DỰ ĐOÁN GIÁ BƠ

image

Owner
hieulmsc
Supply chain management and finance, costing analysis
hieulmsc
Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen.

SmartMeterEVN Dieses Projekt ermöglicht es den Smartmeter der EVN (Netz Niederösterreich) über die Kundenschnittstelle auszulesen. Smart Meter werden

greenMike 43 Dec 04, 2022
Distributed training framework for TensorFlow, Keras, PyTorch, and Apache MXNet.

Horovod Horovod is a distributed deep learning training framework for TensorFlow, Keras, PyTorch, and Apache MXNet. The goal of Horovod is to make dis

Horovod 12.9k Jan 07, 2023
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Best of Australian Centre for Robotic Vision (ACRV) 32 Jun 23, 2022
This handbook accompanies the course: Machine Learning with Hung-Yi Lee

This handbook accompanies the course: Machine Learning with Hung-Yi Lee

RenChu Wang 472 Dec 31, 2022
Evaluate on three different ML model for feature selection using Breast cancer data.

Anomaly-detection-Feature-Selection Evaluate on three different ML model for feature selection using Breast cancer data. ML models: SVM, KNN and MLP.

Tarek idrees 1 Mar 17, 2022
TIANCHI Purchase Redemption Forecast Challenge

TIANCHI Purchase Redemption Forecast Challenge

Haorui HE 4 Aug 26, 2022
CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning applications.

SmartSim Example Zoo This repository contains CrayLabs and user contibuted examples of using SmartSim for various simulation and machine learning appl

Cray Labs 14 Mar 30, 2022
AI and Machine Learning with Kubeflow, Amazon EKS, and SageMaker

Data Science on AWS - O'Reilly Book Get the book on Amazon.com Book Outline Quick Start Workshop (4-hours) In this quick start hands-on workshop, you

Data Science on AWS 2.8k Jan 03, 2023
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
UpliftML: A Python Package for Scalable Uplift Modeling

UpliftML is a Python package for scalable unconstrained and constrained uplift modeling from experimental data. To accommodate working with big data, the package uses PySpark and H2O models as base l

Booking.com 254 Dec 31, 2022
A Python package for time series classification

pyts: a Python package for time series classification pyts is a Python package for time series classification. It aims to make time series classificat

Johann Faouzi 1.4k Jan 01, 2023
Contains an implementation (sklearn API) of the algorithm proposed in "GENDIS: GEnetic DIscovery of Shapelets" and code to reproduce all experiments.

GENDIS GENetic DIscovery of Shapelets In the time series classification domain, shapelets are small subseries that are discriminative for a certain cl

IDLab Services 90 Oct 28, 2022
A Streamlit demo to interactively visualize Uber pickups in New York City

Streamlit Demo: Uber Pickups in New York City A Streamlit demo written in pure Python to interactively visualize Uber pickups in New York City. View t

Streamlit 230 Dec 28, 2022
A visual dataflow programming language for sklearn

Persimmon What is it? Persimmon is a visual dataflow language for creating sklearn pipelines. It represents functions as blocks, inputs and outputs ar

Álvaro Bermejo 194 Jan 04, 2023
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
Tool for producing high quality forecasts for time series data that has multiple seasonality with linear or non-linear growth.

Prophet: Automatic Forecasting Procedure Prophet is a procedure for forecasting time series data based on an additive model where non-linear trends ar

Facebook 15.4k Jan 07, 2023
Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and Python functions.

Mars is a tensor-based unified framework for large-scale data computation which scales numpy, pandas, scikit-learn and many other libraries. Documenta

2.5k Jan 07, 2023
Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models.

Feature-engine is a Python library with multiple transformers to engineer and select features for use in machine learning models. Feature-engine's transformers follow scikit-learn's functionality wit

Soledad Galli 33 Dec 27, 2022
Distributed scikit-learn meta-estimators in PySpark

sk-dist: Distributed scikit-learn meta-estimators in PySpark What is it? sk-dist is a Python package for machine learning built on top of scikit-learn

Ibotta 282 Dec 09, 2022
Dive into Machine Learning

Dive into Machine Learning Hi there! You might find this guide helpful if: You know Python or you're learning it 🐍 You're new to Machine Learning You

Michael Floering 11.1k Jan 03, 2023