This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Overview

Gait3D-Benchmark

This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)". The official project page is here.

What's New

  • [Mar 2022] Another gait in the wild dataset GREW is supported.
  • [Mar 2022] Our Gait3D dataset and SMPLGait method are released.

Model Zoo

Gait3D

Input Size: 128x88(64x44)

Method [email protected] [email protected] mAP mINP download
GaitSet(AAAI2019)) 42.60(36.70) 63.10(58.30) 33.69(30.01) 19.69(17.30) model-128(model-64)
GaitPart(CVPR2020) 29.90(28.20) 50.60(47.60) 23.34(21.58) 13.15(12.36) model-128(model-64)
GLN(ECCV2020) 42.20(31.40) 64.50(52.90) 33.14(24.74) 19.56(13.58) model-128(model-64)
GaitGL(ICCV2021) 23.50(29.70) 38.50(48.50) 16.40(22.29) 9.20(13.26) model-128(model-64)
OpenGait Baseline* 47.70(42.90) 67.20(63.90) 37.62(35.19) 22.24(20.83) model-128(model-64)
SMPLGait(CVPR2022) 53.20(46.30) 71.00(64.50) 42.43(37.16) 25.97(22.23) model-128(model-64)

*It should be noticed that OpenGait Baseline is equal to SMPLGait w/o 3D in our paper.

Cross Domain

Datasets in the Wild (GaitSet, 64x44)

Source Target [email protected] [email protected] mAP
GREW (official split) Gait3D 15.80 30.20 11.83
GREW (our split) 16.50 31.10 11.71
Gait3D GREW (official split) 18.81 32.25 ~
GREW (our split) 43.86 60.89 28.06

Requirements

  • pytorch >= 1.6
  • torchvision
  • pyyaml
  • tensorboard
  • opencv-python
  • tqdm
  • py7zr
  • tabulate
  • termcolor

Installation

You can replace the second command from the bottom to install pytorch based on your CUDA version.

git clone https://github.com/Gait3D/Gait3D-Benchmark.git
cd Gait3D-Benchmark
conda create --name py37torch160 python=3.7
conda activate py37torch160
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
pip install tqdm pyyaml tensorboard opencv-python tqdm py7zr tabulate termcolor

Data Preparation

Please download the Gait3D dataset by signing an agreement. We ask for your information only to make sure the dataset is used for non-commercial purposes. We will not give it to any third party or publish it publicly anywhere.

Data Pretreatment

Run the following command to preprocess the Gait3D dataset.

python misc/pretreatment.py --input_path 'Gait3D/2D_Silhouettes' --output_path 'Gait3D-sils-64-44-pkl' --img_h 64 --img_w 44
python misc/pretreatment.py --input_path 'Gait3D/2D_Silhouettes' --output_path 'Gait3D-sils-128-88-pkl' --img_h 128 --img_w 88
python misc/pretreatment_smpl.py --input_path 'Gait3D/3D_SMPLs' --output_path 'Gait3D-smpls-pkl'

Data Structrue

After the pretreatment, the data structure under the directory should like this

├── Gait3D-sils-64-44-pkl
│  ├── 0000
│     ├── camid0_videoid2
│        ├── seq0
│           └──seq0.pkl
├── Gait3D-sils-128-88-pkl
│  ├── 0000
│     ├── camid0_videoid2
│        ├── seq0
│           └──seq0.pkl
├── Gait3D-smpls-pkl
│  ├── 0000
│     ├── camid0_videoid2
│        ├── seq0
│           └──seq0.pkl

Train

Run the following command:

sh train.sh

Test

Run the following command:

sh test.sh

Citation

Please cite this paper in your publications if it helps your research:

@inproceedings{zheng2022gait3d,
  title={Gait Recognition in the Wild with Dense 3D Representations and A Benchmark},
  author={Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei},
  booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Acknowledgement

Here are some great resources we benefit:

  • The codebase is based on OpenGait.
  • The 3D SMPL data is obtained by ROMP.
  • The 2D Silhouette data is obtained by HRNet-segmentation.
  • The 2D pose data is obtained by HRNet.
  • The ReID featrue used to make Gait3D is obtained by FastReID.
Comments
  • lib/modeling/models/smplgait.py throwing error when training a new dataset

    lib/modeling/models/smplgait.py throwing error when training a new dataset

    Hi Jinkai,

    When I try to use the SMPLGait to apply on other dataset, during the training process, the smplgait.py throws the error that: smpls = ipts[1][0] # [n, s, d] IndexError: list index out of range It is also interesting that I used 4 GPUs in the training. 3 of them could detect the the ipts[1][0] tensor with size 1. However, the fourth one failed to do so. Could I know how I can solve this?

    opened by zhiyuann 7
  • I have a few questions about Gait3D-Benchmark Datasets

    I have a few questions about Gait3D-Benchmark Datasets

    Hi. Im jjun. I read your paper impressively.

    We don't currently live in China, so it is difficult to use dataset on baidu disk.

    If you don't mind, is there a way to download the dataset to another disk (e.g Google drive)?

    opened by jjunnii 6
  • Question about 3D SMPL skeleton topology diagram

    Question about 3D SMPL skeleton topology diagram

    Your work promotes the application of gait recognition in real scenes, can you provide the topology diagram of the SMPL 3D skeleton in Gait3D? Because the specific meaning of the 24 joint points is not stated in your data description document.

    opened by HL-HYX 4
  • ROMP SMPL transfer

    ROMP SMPL transfer

    When I try to use the ROMP to generate out the 3D mesh, I detect there is a version conflict with the ROMP used by SMPLGait. Could I know which version of the ROMP the SMPLGait used? In this way I could use the SMPLGait to run on other ReID dataset.

    opened by zhiyuann 3
  • question about iteration and epoch

    question about iteration and epoch

    Hi! The total iteration in your code is set to 180000, and you report the total epoch as 1200 in your paper. What's the relationship between iteration and epoch?

    opened by yan811 2
  • About data generation

    About data generation

    Hi! I 'd like to know some details about data generation in NPZ files.

    In npz file: 1 What's the order of "pose"? SMPL pose parameter should be [24,3] dim, how did you convert it to [72,]? The order is [keypoint1_angel1, keypoint1_angle2, keypoint1_angle3, keypoint2_angel1, keypoint2_angle2, keypoint2_angle3...] or [keypoint1_angle1, keypoint2_angle1... keypoint1_angle2, keypoint2_angle2... keypoint1_angle3, keypoint1_angle3... ] ?

    2 How did you generate pose into SMPL format,SPIN format , and OpenPose format? What's the order of the second dim? Is the keypoint order the same with SMPL model?

    3 In pkl file: For example, dim of data in './0000/camid0_videoid2/seq0/seq0.pkl' is [48,85]. What's the order of dim 1? Is it ordered by time order or shuffled?

    opened by yan811 2
  • GREW pretreatment `to_pickle` has size 0

    GREW pretreatment `to_pickle` has size 0

    I'm trying to run GREW pretreatment code but it generates no GREW-pkl folder at the end of the process. I debugged myself and checked if the --dataset flag is set properly and the to_pickle list size before saving the pickle file. The flag is well set but the size of the list is always 0.

    I downloaded the GREW dataset from the link you guys sent me and made de GREW-rearranged folder using the code provided. I'll keep investigating what is causing such an error and if I find I'll set a fixing PR.

    opened by gosiqueira 1
  • About the pose data

    About the pose data

    Can you make a detailed description of the pose data? This is the path of one frame pose and the corresponding content of the txt file Gait3D/2D_Poses/0000/camid9_videoid2/seq0/human_crop_f17279.txt '311,438,89.201164,62.87694,0.57074964,89.201164,54.322254,0.47146344,84.92382,62.87694,0.63443935,42.150383....' I have 3 questions. Q1: what does 'f17279' means? Q2: what does the first number (e.g. 311) in the txt file mean? Q3: which number('f17279' or '311') should I regard as a base when I order the sequence? Thank you very much!

    opened by HiAleeYang 0
Owner
Official repo for Gait3D dataset
Exploration-Exploitation Dilemma Solving Methods

Exploration-Exploitation Dilemma Solving Methods Medium article for this repo - HERE In ths repo I implemented two techniques for tackling mentioned t

Aman Mishra 6 Jan 25, 2022
[CVPR'21] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation

Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation Weixiang Yang, Qi Li, Wenxi Liu, Yuanlong Yu, Y

118 Dec 26, 2022
Vrcwatch - Supply the local time to VRChat as Avatar Parameters through OSC

English: README-EN.md VRCWatch VRCWatch は、VRChat 内のアバター向けに現在時刻を送信するためのプログラムです。 使

Kosaki Mezumona 17 Nov 30, 2022
Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO)

V-MPO Simple code to demonstrate Deep Reinforcement Learning by using an on-policy adaptation of Maximum a Posteriori Policy Optimization (MPO) in Pyt

Nugroho Dewantoro 9 Jun 06, 2022
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022
OpenMMLab Video Perception Toolbox. It supports Video Object Detection (VID), Multiple Object Tracking (MOT), Single Object Tracking (SOT), Video Instance Segmentation (VIS) with a unified framework.

English | 简体中文 Documentation: https://mmtracking.readthedocs.io/ Introduction MMTracking is an open source video perception toolbox based on PyTorch.

OpenMMLab 2.7k Jan 08, 2023
Efficient and Scalable Physics-Informed Deep Learning and Scientific Machine Learning on top of Tensorflow for multi-worker distributed computing

Notice: Support for Python 3.6 will be dropped in v.0.2.1, please plan accordingly! Efficient and Scalable Physics-Informed Deep Learning Collocation-

tensordiffeq 74 Dec 09, 2022
PyTorch EO aims to make Deep Learning for Earth Observation data easy and accessible to real-world cases and research alike.

Pytorch EO Deep Learning for Earth Observation applications and research. 🚧 This project is in early development, so bugs and breaking changes are ex

earthpulse 28 Aug 25, 2022
Repository for "Improving evidential deep learning via multi-task learning," published in AAAI2022

Improving evidential deep learning via multi task learning It is a repository of AAAI2022 paper, “Improving evidential deep learning via multi-task le

deargen 11 Nov 19, 2022
LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

LogDeep is an open source deeplearning-based log analysis toolkit for automated anomaly detection.

donglee 279 Dec 13, 2022
OneFlow is a performance-centered and open-source deep learning framework.

OneFlow OneFlow is a performance-centered and open-source deep learning framework. Latest News Version 0.5.0 is out! First class support for eager exe

OneFlow 4.2k Jan 07, 2023
[AAAI22] Reliable Propagation-Correction Modulation for Video Object Segmentation

Reliable Propagation-Correction Modulation for Video Object Segmentation (AAAI22) Preview version paper of this work is available at: https://arxiv.or

Xiaohao Xu 70 Dec 04, 2022
A python tutorial on bayesian modeling techniques (PyMC3)

Bayesian Modelling in Python Welcome to "Bayesian Modelling in Python" - a tutorial for those interested in learning how to apply bayesian modelling t

Mark Regan 2.4k Jan 06, 2023
Centroid-UNet is deep neural network model to detect centroids from satellite images.

Centroid UNet - Locating Object Centroids in Aerial/Serial Images Introduction Centroid-UNet is deep neural network model to detect centroids from Aer

GIC-AIT 19 Dec 08, 2022
Based on the paper "Geometry-aware Instance-reweighted Adversarial Training" ICLR 2021 oral

Geometry-aware Instance-reweighted Adversarial Training This repository provides codes for Geometry-aware Instance-reweighted Adversarial Training (ht

Jingfeng 47 Dec 22, 2022
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
A python package to perform same transformation to coco-annotation as performed on the image.

coco-transform-util A python package to perform same transformation to coco-annotation as performed on the image. Installation Way 1 $ git clone https

1 Jan 14, 2022