This repository contains implementations of all Machine Learning Algorithms from scratch in Python. Mathematics required for ML and many projects have also been included.

Overview

👏 Pre- requisites to Machine Learning

                                                                                                                       Key :-
1️⃣ Python Basics                                                                                                      🔴 Not Done Yet 
    a. Python basics :- variables, list, sets, tuples, loops, functions, lambda functions, dictionary, input methods   rest are completed
    b. Python Oops
    c. File and Error Handling 
    d. Iteration Protocol and Generators
    
2️⃣ Data Acquisition
    a. Data Acquisition using Beautiful Soup 
    b. Data Acquisition using Web APIs
    
3️⃣ Python Libraries :-
    a. Numpy
    b. Matplotlib
    c. Seaborn
    d. Pandas
   🔴Plotly
    
4️⃣ Feature Selection and Extraction
    a.Feature Selection - Chi2 test, RandomForest Classifier
    b.Feature Extraction - Principal Component Analysis

💯 Basics of Machine Learning

1️⃣ Basic
    ✅Types of ML
    ✅Challenges in ML
    ✅Overfitting and Underfitting
    🔴Testing and Validation
    🔴Cross Validation
    🔴Grid Search
    🔴Random Search
    🔴Confusion Matrix
    🔴Precision, Recall ], F1 Score
    🔴ROC-AUC Curve
 
 2️⃣ Predictive Modelling
   🔴Introduction to Predictive Modelling
   🔴Model in Analytics
   🔴Bussiness Problem and Prediction Model
   🔴Phases of Predictive Modelling
   🔴Data Exploration for Modelling
   🔴Data and Patterns
   🔴Identifying Missing Data
   🔴Outlier Detection
   🔴Z-Score
   🔴IQR
   🔴Percentile

🔥 Machine-Learning

1️⃣ K- Nearest Neighbour:-
       - Theory
       - Implementation
       
2️⃣ Linear Regression
       - What is Linear Regression
       - What is gradient descent
       - Implementation of gradient descent
       - Importance of Learning Rate
       - Types of Gradient Descent
       - Making predictions on data set
       - Contour and Surface Plots
       - Visualizing Loss function and Gradient Descent
       🔴 Polynomial Regression
       🔴Regularization
       🔴Ridge Regression
       🔴Lasso Regression
       🔴Elastic Net and Early Stopping 
       - Multivariate Linear Regression on boston housing dataset
       - Optimization of Multivariate Linear Regression 
       - Using Scikit Learn for Linear Regression  
       - Closed Form Solution
       - LOWESS - Locally Weighted Regression
       - Maximum Likelihood Estimation
       - Project - Air Pollution Regression
      
 3️⃣ Logistic Regression
      - Hypothesis function
      - Log Loss
      - Proof of Log loss by MLE
      - Gradient Descent Update rule for Logistic Regression
      - Gradient Descent Implementation of Logistic Regression
      🔴Multiclass Classification
      - Sk-Learn Implementation of Logistic Regression on chemical classification dataset.
      
4️⃣ Natural Language Processing 
      - Bag of Words Pipeline 
      - Tokenization and Stopword Removal
      - Regex based Tokenization
      - Stemming & Lemmatization
      - Constructing Vocab
      - Vectorization with Stopwords Removal
      - Bag of Words Model- Unigram, Bigram, Trigram, n- gram
      - TF-IDF Normalization     
      
5️⃣ Naive Bayes
      - Bayes Theorem Formula 
      - Bayes Theorem - Spam or not
      - Bayes Theorem - Disease or not
      - Mushroom Classification
      - Text Classification
      - Laplace Smoothing
      - Multivariate Bernoulli Naive Bayes
      - Multivariate Event Model Naive Bayes
      - Multivariate Bernoulli Naive Bayes vs Multivariate Event Model Naive Bayes
      - Gaussian Naive Bayes
      🔴 Project on Naive Bayes
      
6️⃣ Decision Tree 
      - Entropy
      - Information Gain
      - Process Kaggle Titanic Dataset 
      - Implementation of Information Gain
      - Implementation of Decision Tree
      - Making Predictions
      - Decision Trees using Sci-kit Learn
     
          
 7️⃣ Support Vector Machine 
      - SVM Implementation in Python
      🔴Different Types of Kernel
      🔴Project on SVC
      🔴Project on SVR
      🔴Project on SVC
  
 8️⃣ Principal Component Analysis
     🔴 PCA in Python 
     🔴 PCA Project
     🔴 Fail Case of PCA (Swiss Roll)
     
 9️⃣ K- Means
      🔴 Implentation in Python
      - Implementation using Libraries
      - K-Means ++
      - DBSCAN 
      🔴 Project
 
 🔟 Ensemble Methods and Random Forests
     🔴Ensemble and Voting Classifiers
     🔴Bagging and Pasting
     🔴Random Forest
     🔴Extra Tree
     🔴 Ada Boost
     🔴 Gradient Boosting
     🔴 Gradient Boosting with Sklearn
     🔴 Stacking Ensemble Learning
  
  1️⃣1️⃣  Unsupervised Learning
     🔴 Hierarchical Clustering
     🔴 DBSCAN 
     🔴 BIRCH 
     🔴 Mean - Shift
     🔴 Affinity Propagation
     🔴 Anomaly Detection
     🔴Spectral Clustering
     🔴 Gaussian Mixture
     🔴 Bayesian Gaussian Mixture Models

💯 Mathematics required for Machine Learning

    1️⃣ Statistics:
        a. Measures of central tendency – mean, median, mode
        b. measures of dispersion – mean deviation, standard deviation, quartile deviation, skewness and kurtosis.
        c. Correlation coefficient, regression, least squares principles of curve fitting
        
    2️⃣ Probability:
        a. Introduction, finite sample spaces, conditional probability and independence, Bayes’ theorem, one dimensional random variable, mean, variance.
        
    3️⃣ Linear Algebra :- scalars,vectors,matrices,tensors.transpose,broadcasting,matrix multiplication, hadamard product,norms,determinants, solving linear equations

📚 Handwritten notes with proper implementation and Mathematics Derivations of each algorithm from scratch

   ✅ KNN 
   ✅ Linear Regressio
   ✅ Logistic Regression 
   ✅ Feature Selection and Extraction
   ✅ Naive Bayes

🙌 Projects :-

    🔅 Movie Recommendation System
    🔅 Diabetes Classification 
    🔅 Handwriting Recognition
    🔅 Linkedin Webscraping
    🔅 Air Pollution Regression
Owner
Vanshika Mishra
I am a Data Science Enthusiast. Research and open source piques my interests
Vanshika Mishra
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
CryptoFrog - My First Strategy for freqtrade

cryptofrog-strategies CryptoFrog - My First Strategy for freqtrade NB: (2021-04-20) You'll need the latest freqtrade develop branch otherwise you migh

Robert Davey 137 Jan 01, 2023
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
Semiconductor Machine learning project

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

kunal suryawanshi 1 Jan 15, 2022
A PyTorch implementation of "DGC-Net: Dense Geometric Correspondence Network"

DGC-Net: Dense Geometric Correspondence Network This is a PyTorch implementation of our work "DGC-Net: Dense Geometric Correspondence Network" TL;DR A

191 Dec 16, 2022
Code to replicate the key results from Exploring the Limits of Out-of-Distribution Detection

Exploring the Limits of Out-of-Distribution Detection In this repository we're collecting replications for the key experiments in the Exploring the Li

Stanislav Fort 35 Jan 03, 2023
Compositional and Parameter-Efficient Representations for Large Knowledge Graphs

NodePiece - Compositional and Parameter-Efficient Representations for Large Knowledge Graphs NodePiece is a "tokenizer" for reducing entity vocabulary

Michael Galkin 107 Jan 04, 2023
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
Multi-Modal Machine Learning toolkit based on PyTorch.

简体中文 | English TorchMM 简介 多模态学习工具包 TorchMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 TorchMM 初始版本 v1.0 特性 丰富的任务场景:工具

njustkmg 1 Jan 05, 2022
Deep Text Search is an AI-powered multilingual text search and recommendation engine with state-of-the-art transformer-based multilingual text embedding (50+ languages).

Deep Text Search - AI Based Text Search & Recommendation System Deep Text Search is an AI-powered multilingual text search and recommendation engine w

19 Sep 29, 2022
ERISHA is a mulitilingual multispeaker expressive speech synthesis framework. It can transfer the expressivity to the speaker's voice for which no expressive speech corpus is available.

ERISHA: Multilingual Multispeaker Expressive Text-to-Speech Library ERISHA is a multilingual multispeaker expressive speech synthesis framework. It ca

Ajinkya Kulkarni 43 Nov 27, 2022
Find-Lane-Line - Use openCV library and Python to detect the road-lane-line

Find-Lane-Line This project is to use openCV library and Python to detect the road-lane-line. Data Pipeline Step one : Color Selection Step two : Cann

Kenny Cheng 3 Aug 17, 2022
Official Pytorch Implementation of Unsupervised Image Denoising with Frequency Domain Knowledge

Unsupervised Image Denoising with Frequency Domain Knowledge (BMVC 2021 Oral) : Official Project Page This repository provides the official PyTorch im

Donggon Jang 12 Sep 26, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
Small-bets - Ergodic Experiment With Python

Ergodic Experiment Based on this video. Run this experiment with this command: p

Michael Brant 3 Jan 11, 2022
The implementation for "Comprehensive Knowledge Distillation with Causal Intervention".

Comprehensive Knowledge Distillation with Causal Intervention This repository is a PyTorch implementation of "Comprehensive Knowledge Distillation wit

Xiang Deng 10 Nov 03, 2022
Implementation of Axial attention - attending to multi-dimensional data efficiently

Axial Attention Implementation of Axial attention in Pytorch. A simple but powerful technique to attend to multi-dimensional data efficiently. It has

Phil Wang 250 Dec 25, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023
Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetune Paradigm

Sparse Progressive Distillation: Resolving Overfitting under Pretrain-and-Finetu

3 Dec 05, 2022
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023