[email protected]) | PythonRepo" /> [email protected]) | PythonRepo">

This repository contains the data and code for the paper "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors" ([email protected])

Overview

GP-VAE

This repository provides datasets and code for preprocessing, training and testing models for the paper:

Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors
Wanyu Du, Jianqiao Zhao, Liwei Wang and Yangfeng Ji
ACL 2022 6th Workshop on Structured Prediction for NLP

image

Installation

The following command installs all necessary packages:

pip install -r requirements.txt

The project was tested using Python 3.6.6.

Datasets

  1. Twitter URL includes trn/val/tst.tsv, which has the following format in each line:
source_sentence \t reference_sentence 
  1. GYAFC has two sub-domains em and fr, please request and download the data from the original paper here.

Models

Training

Train the LSTM-based variational encoder-decoder with GP priors:

cd models/pg/
python main.py --task train --data_file ../../data/twitter_url \
			   --model_type gp_full --kernel_v 65.0 --kernel_r 0.0001

where --data_file indicates the data path for the training data,
--model_type indicates which prior to use, including copynet/normal/gp_full,
--kernel_v and --kernel_r specifies the hyper-parameters for the kernel of GP prior.

Train the transformer-based variational encoder-decoder with GP priors:

cd models/t5/
python t5_gpvae.py --task train --dataset twitter_url \
    			   --kernel_v 512.0 --kernel_r 0.001 

where --data_file indicates the data path for the training data,
--kernel_v and --kernel_r specifies the hyper-parameters for the kernel of GP prior.

Inference

Test the LSTM-based variational encoder-decoder with GP priors:

cd models/pg/
python main.py --task decode --data_file ../../data/twitter_url \
			   --model_type gp_full --kernel_v 65.0 --kernel_r 0.0001 \
			   --decode_from sample \
			   --model_file /path/to/best/checkpoint

where --data_file indicates the data path for the testing data,
--model_type indicates which prior to use, including copynet/normal/gp_full,
--kernel_v and --kernel_r specifies the hyper-parameters for the kernel of GP prior,
--decode_from indicates generating results conditioning on z_mean or randomly sampled z, including mean/sample.

Test the transformer-based variational encoder-decoder with GP priors:

cd models/t5/
python t5_gpvae.py --task eval --dataset twitter_url \
    			   --kernel_v 512.0 --kernel_r 0.001 \
    			   --from_mean \
    			   --timestamp '2021-02-14-04-57-04' \
    			   --ckpt '30000' # load best checkpoint

where --data_file indicates the data path for the testing data,
--kernel_v and --kernel_r specifies the hyper-parameters for the kernel of GP prior,
--from_mean indicates whether to generate results conditioning on z_mean or randomly sampled z,
--timestamp and --ckpt indicate the file path for the best checkpoint.

Citation

If you find this work useful for your research, please cite our paper:

Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors

@inproceedings{du2022gpvae,
    title = "Diverse Text Generation via Variational Encoder-Decoder Models with Gaussian Process Priors",
    author = "Du, Wanyu and Zhao, Jianqiao and Wang, Liwei and Ji, Yangfeng",
    booktitle = "Proceedings of the 6th Workshop on Structured Prediction for NLP (SPNLP 2022)",
    year = "2022",
    publisher = "Association for Computational Linguistics",
}
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on table detection and table structure recognition.

WTW-Dataset This is an official implementation for the WTW Dataset in "Parsing Table Structures in the Wild " on ICCV 2021. Here, you can download the

109 Dec 29, 2022
Code to reproduce experiments in the paper "Explainability Requires Interactivity".

Explainability Requires Interactivity This repository contains the code to train all custom models used in the paper Explainability Requires Interacti

Digital Health & Machine Learning 5 Apr 07, 2022
CVPR2022 paper "Dense Learning based Semi-Supervised Object Detection"

[CVPR2022] DSL: Dense Learning based Semi-Supervised Object Detection DSL is the first work on Anchor-Free detector for Semi-Supervised Object Detecti

Bhchen 69 Dec 08, 2022
Code accompanying the paper "Wasserstein GAN"

Wasserstein GAN Code accompanying the paper "Wasserstein GAN" A few notes The first time running on the LSUN dataset it can take a long time (up to an

3.1k Jan 01, 2023
Robust, modular and efficient implementation of advanced Hamiltonian Monte Carlo algorithms

AdvancedHMC.jl AdvancedHMC.jl provides a robust, modular and efficient implementation of advanced HMC algorithms. An illustrative example for Advanced

The Turing Language 167 Jan 01, 2023
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
The implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets.

Joint t-sne This is the implementation for paper Joint t-SNE for Comparable Projections of Multiple High-Dimensional Datasets. abstract: We present Jo

IDEAS Lab 7 Dec 18, 2022
PushForKiCad - AISLER Push for KiCad EDA

AISLER Push for KiCad Push your layout to AISLER with just one click for instant

AISLER 31 Dec 29, 2022
Diffgram - Supervised Learning Data Platform

Data Annotation, Data Labeling, Annotation Tooling, Training Data for Machine Learning

Diffgram 1.6k Jan 07, 2023
StyleGAN2-ada for practice

This version of the newest PyTorch-based StyleGAN2-ada is intended mostly for fellow artists, who rarely look at scientific metrics, but rather need a working creative tool. Tested on Python 3.7 + Py

vadim epstein 170 Nov 16, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
Leveraging OpenAI's Codex to solve cornerstone problems in Music

Music-Codex Leveraging OpenAI's Codex to solve cornerstone problems in Music Please NOTE: Presented generated samples were created by OpenAI's Codex P

Alex 2 Mar 11, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
AI-Fitness-Tracker - AI Fitness Tracker With Python

AI-Fitness-Tracker We have build a AI based Fitness Tracker using OpenCV and Pyt

Sharvari Mangale 5 Feb 09, 2022
Sky Computing: Accelerating Geo-distributed Computing in Federated Learning

Sky Computing Introduction Sky Computing is a load-balanced framework for federated learning model parallelism. It adaptively allocate model layers to

HPC-AI Tech 72 Dec 27, 2022
This repository provides a basic implementation of our GCPR 2021 paper "Learning Conditional Invariance through Cycle Consistency"

Learning Conditional Invariance through Cycle Consistency This repository provides a basic TensorFlow 1 implementation of the proposed model in our GC

BMDA - University of Basel 1 Nov 04, 2022
A large-image collection explorer and fast classification tool

IMAX: Interactive Multi-image Analysis eXplorer This is an interactive tool for visualize and classify multiple images at a time. It written in Python

Matias Carrasco Kind 23 Dec 16, 2022