test

Overview

Lidar-data-decode

In this project, you can decode your lidar data frame(pcap file) and make your own datasets(test dataset) in Windows without any huge c++-based lib or ROS under Ubuntu

  1. in lidar data frame decode part:
  • Supports just LSC32(LeiShen Intelligent System) at the moment(you can also change the parameters to fit other lidars like velodyne, robosense...).
  • Takes a pcap file recorded by LSC32 lidar as input.
  • Extracts all Frames from the pcap file.
  • Saves data-frames: Data frames are saved as Pointcloud files (.pcd) and/or as Text files(.txt)
  • Can be parameterizes by yaml file.
  1. in dataset prepare part:
  • Files format conversion(txt to bin, if you want to make your datasets like KITTI format)
  • Files rename
  • Data frames visualization
Output

Below a sample out of 2 Points in a point cloud file

All Point Cloud Text-Files have follwoing fields: Time [musec], X [m], Y [m], Z [m], ID, Intensity, Latitude [Deg], Longitudes [Deg], Distance [m] 2795827803, 0.032293, 5.781942, -1.549291, 0, 6, 0.320, -15.000, 5.986

All Point Cloud PCD-Files have follwoing fields:

  1. X-Coordinate
  2. Y-Coordinate
  3. Z-Coordinate
  4. Intensity
Dependencies
  1. for lidar frame decode: Veloparser has follwoing package dependencies:
  • dpkt
  • numpy
  • tqdm
  1. for lidar frame Visualization:
  • mayavi
  • torch
  • opencv-python (using pip install opencv-python)
Run

Firstly, clone this project by: "git clone https://github.com/hitxing/Lidar-data-decode.git"

Because empty folders can not be upload on Github, after you clone this project, please create some empty folders as follows: 20210301215614471

a. for lidar frame decode:

  1. make sure test.pcap is in dir .\input\test.pcap
  2. check your parameters in params.yaml, then, run: "python main.py --path=.\input\test.pcap --out-dir=.\output --config=.\params.yaml"

after this operation, you can get your Text files/PCD files as follows:

​ 1)Text files in .\output\velodynevlp16\data_ascii:

1614600893415

​ 2)PCD files in .\output\velodynevlp16\data_pcl:

1614600836040

b. for Format conversion and rename:

If you want to make your datasets like KITTI format(bin files), you should convert your txt files to bin files at first, if you want to make a datset like nuscenes(pcd files), just go to next step and ignore that.

  1. put all your txt files to dir .\txt2bin\txt and run ''python txt2bin.py"

then, your txt files will convert to bin format and saved in dir ./txt2bin/bin like this:

1614602160574

  1. To make a test dataset like KITTI format, the next step is to rename your files like 000000.bin, for bin files(also fits for pcd files, change the parameters in file_rename.py, line 31), run "python file_rename.py", you can get your test dataset in the dir .\txt2bin\bin like this:

    1614602847542

c. for visualization your data frames(just for bin files now)

Please make sure that all of those packages are installed (pip or conda).

  1. copy your bin files in dir .\txt2bin\bin to your own dir(default is in .\visualization)

  2. run "python point_visul.py", the visual will like this:

    1614603301315

Note that lidar data in 000000.bin is not complete(after 000000.bin is complete), that why the visualization result is as above, you can delect this frame when you make your own test dataset .000001.bin will like this:

1614603496357

If you want to make your full dataset and labeling your data frame, I hope here will be helpful(https://github.com/Gltina/ACP-3Detection).

Note

Thanks ArashJavan a lot for provide this fantastic project! lidar data frame decode part in Lidar-data-decode is based on https://github.com/ArashJavan/veloparser which Supports Velodyne VLP16, At this moment, Lidar-data-decode supports LSC32-151A andLSC32-151C, actually, this project can support any lidar as long as you change the parameters follow the corresponding technical manual.

The reason why i wrote this project: a. I could not find any simple way without installing ROS (Robot operating software) or other huge c++-based lib that does 'just' extract the point clouds from pcap-file. b. Provide a reference to expand this project to fit your own lidar and make your own datasets

CCQA A New Web-Scale Question Answering Dataset for Model Pre-Training

CCQA: A New Web-Scale Question Answering Dataset for Model Pre-Training This is the official repository for the code and models of the paper CCQA: A N

Meta Research 29 Nov 30, 2022
초성 해석기 based on ko-BART

초성 해석기 개요 한국어 초성만으로 이루어진 문장을 입력하면, 완성된 문장을 예측하는 초성 해석기입니다. 초성: ㄴㄴ ㄴㄹ ㅈㅇㅎ 예측 문장: 나는 너를 좋아해 모델 모델은 SKT-AI에서 공개한 Ko-BART를 이용합니다. 데이터 문장 단위로 이루어진 아무 코퍼스나

Dawoon Jung 29 Oct 28, 2022
End-2-end speech synthesis with recurrent neural networks

Introduction New: Interactive demo using Google Colaboratory can be found here TTS-Cube is an end-2-end speech synthesis system that provides a full p

Tiberiu Boros 214 Dec 07, 2022
PyTorch original implementation of Cross-lingual Language Model Pretraining.

XLM NEW: Added XLM-R model. PyTorch original implementation of Cross-lingual Language Model Pretraining. Includes: Monolingual language model pretrain

Facebook Research 2.7k Dec 27, 2022
Code for the paper "Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer"

T5: Text-To-Text Transfer Transformer The t5 library serves primarily as code for reproducing the experiments in Exploring the Limits of Transfer Lear

Google Research 4.6k Jan 01, 2023
NeuTex: Neural Texture Mapping for Volumetric Neural Rendering

NeuTex: Neural Texture Mapping for Volumetric Neural Rendering Paper: https://arxiv.org/abs/2103.00762 Running Run on the provided DTU scene cd run ba

Fanbo Xiang 68 Jan 06, 2023
This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project

Common Voice Utils This repository collects together basic linguistic processing data for using dataset dumps from the Common Voice project. It aims t

Francis Tyers 40 Dec 20, 2022
⛵️The official PyTorch implementation for "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing" (EMNLP 2020).

BERT-of-Theseus Code for paper "BERT-of-Theseus: Compressing BERT by Progressive Module Replacing". BERT-of-Theseus is a new compressed BERT by progre

Kevin Canwen Xu 284 Nov 25, 2022
Unsupervised Language Model Pre-training for French

FlauBERT and FLUE FlauBERT is a French BERT trained on a very large and heterogeneous French corpus. Models of different sizes are trained using the n

GETALP 212 Dec 10, 2022
An implementation of WaveNet with fast generation

pytorch-wavenet This is an implementation of the WaveNet architecture, as described in the original paper. Features Automatic creation of a dataset (t

Vincent Herrmann 858 Dec 27, 2022
xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building blocks.

Description xFormers is a modular and field agnostic library to flexibly generate transformer architectures by interoperable and optimized building bl

Facebook Research 2.3k Jan 08, 2023
A Pytorch implementation of "Splitter: Learning Node Representations that Capture Multiple Social Contexts" (WWW 2019).

Splitter ⠀⠀ A PyTorch implementation of Splitter: Learning Node Representations that Capture Multiple Social Contexts (WWW 2019). Abstract Recent inte

Benedek Rozemberczki 201 Nov 09, 2022
MMDA - multimodal document analysis

MMDA - multimodal document analysis

AI2 75 Jan 04, 2023
Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Semantic Segmentation".

Dual Path Learning for Domain Adaptation of Semantic Segmentation Official PyTorch implementation of "Dual Path Learning for Domain Adaptation of Sema

27 Dec 22, 2022
This is Assignment1 code for the Web Data Processing System.

This is a Python program to Entity Linking by processing WARC files. We recognize entities from web pages and link them to a Knowledge Base(Wikidata).

3 Dec 04, 2022
Auto_code_complete is a auto word-completetion program which allows you to customize it on your needs

auto_code_complete is a auto word-completetion program which allows you to customize it on your needs. the model for this program is one of the deep-learning NLP(Natural Language Process) model struc

RUO 2 Feb 22, 2022
CoSENT、STS、SentenceBERT

CoSENT_Pytorch 比Sentence-BERT更有效的句向量方案

102 Dec 07, 2022
🕹 An esoteric language designed so that the program looks like the transcript of a Pokémon battle

PokéBattle is an esoteric language designed so that the program looks like the transcript of a Pokémon battle. Original inspiration and specification

Eduardo Correia 9 Jan 11, 2022
🤖 Basic Financial Chatbot with handoff ability built with Rasa

Financial Services Example Bot This is an example chatbot demonstrating how to build AI assistants for financial services and banking with Rasa. It in

Mohammad Javad Hossieni 4 Aug 10, 2022
Convolutional Neural Networks for Sentence Classification

Convolutional Neural Networks for Sentence Classification Code for the paper Convolutional Neural Networks for Sentence Classification (EMNLP 2014). R

Yoon Kim 2k Jan 02, 2023